|  Help  |  About  |  Contact Us

Publication : Requirement of MEF2A, C, and D for skeletal muscle regeneration.

First Author  Liu N Year  2014
Journal  Proc Natl Acad Sci U S A Volume  111
Issue  11 Pages  4109-14
PubMed ID  24591619 Mgi Jnum  J:207388
Mgi Id  MGI:5556319 Doi  10.1073/pnas.1401732111
Citation  Liu N, et al. (2014) Requirement of MEF2A, C, and D for skeletal muscle regeneration. Proc Natl Acad Sci U S A 111(11):4109-14
abstractText  Regeneration of adult skeletal muscle following injury occurs through the activation of satellite cells, an injury-sensitive muscle stem cell population that proliferates, differentiates, and fuses with injured myofibers. Members of the myocyte enhancer factor 2 (MEF2) family of transcription factors play essential roles in muscle differentiation during embryogenesis, but their potential contributions to adult muscle regeneration have not been systematically explored. To investigate the potential involvement of MEF2 factors in muscle regeneration, we conditionally deleted the Mef2a, c, and d genes, singly and in combination, within satellite cells in mice, using tamoxifen-inducible Cre recombinase under control of the satellite cell-specific Pax7 promoter. We show that deletion of individual Mef2 genes has no effect on muscle regeneration in response to cardiotoxin injury. However, combined deletion of the Mef2a, c, and d genes results in a blockade to regeneration. Satellite cell-derived myoblasts lacking MEF2A, C, and D proliferate normally in culture, but cannot differentiate. The absence of MEF2A, C, and D in satellite cells is associated with aberrant expression of a broad collection of known and unique protein-coding and long noncoding RNA genes. These findings reveal essential and redundant roles of MEF2A, C, and D in satellite cell differentiation and identify a MEF2-dependent transcriptome associated with skeletal muscle regeneration.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

11 Bio Entities

Trail: Publication

0 Expression