|  Help  |  About  |  Contact Us

Publication : A charged multivesicular body protein (CHMP4B) is required for lens growth and differentiation.

First Author  Zhou Y Year  2019
Journal  Differentiation Volume  109
Pages  16-27 PubMed ID  31404815
Mgi Jnum  J:282278 Mgi Id  MGI:6369954
Doi  10.1016/j.diff.2019.07.003 Citation  Zhou Y, et al. (2019) A charged multivesicular body protein (CHMP4B) is required for lens growth and differentiation. Differentiation 109:16-27
abstractText  Charged multivesicular body protein 4B (CHMP4B) functions as a core component of the endosome sorting complex required for transport-III (ESCRT-III) machinery that facilitates diverse membrane remodeling and scission processes in eukaryotes. Mutations in the human CHMP4B gene underlie rare, inherited forms of early-onset lens opacities or cataract. Here we have characterized the lens phenotypes of mutant (knock-in) mice harboring a human cataract-associated mutation (p.D129V) in CHMP4B (Chmp4b-mutant) and conditional knockdown mice deficient in lens CHMP4B (Chmp4b-CKD). In situ hybridization localized Chmp4b transcripts to lens epithelial cells and elongating fiber cells at the lens equator. Heterozygous Chmp4b-mutant (D/V) mice were viable and fertile with lenses grossly similar to those of wild-type. However, homozygous Chmp4b-mutant (V/V) mice died by embryonic day 15.5 (E15.5) with grossly abnormal eye and brain histology. Chmp4b-CKD mice displayed variable degrees of lens dysmorphology including lens ablation. Immuno-localization of aquaporin-0 (AQP0) revealed lens fiber cell degeneration in homozygous Chmp4b-mutant (V/V) mouse embryos and in embryonic and postnatal Chmp4b-CKD mice. DNA fragmentation (TUNEL) analysis revealed global cell death in homozygous Chmp4b-mutant (V/V) embryos, whereas, cell death was confined to the lens of Chmp4b-CKD mice. Immuno-localization of the monocyte/macrophage marker macrosialin (CD68) suggested that severe lens degeneration in Chmp4b-CKD mice resulted in an ocular immune cell response. Collectively, these mouse data suggest that (1) heterozygous, germ-line mutations in Chmp4b may not manifest as cataract, (2) homozygous, germ-line mutations in Chmp4b are embryonic lethal, and (3) conditional loss of Chmp4b results in arrest of lens growth and differentiation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Authors

16 Bio Entities

Trail: Publication

39 Expression

Trail: Publication