|  Help  |  About  |  Contact Us

Publication : Endothelial cell-specific expression of serine/threonine kinase 11 modulates dendritic cell differentiation.

First Author  Zhao Q Year  2022
Journal  Nat Commun Volume  13
Issue  1 Pages  648
PubMed ID  35115536 Mgi Jnum  J:320666
Mgi Id  MGI:6876528 Doi  10.1038/s41467-022-28316-6
Citation  Zhao Q, et al. (2022) Endothelial cell-specific expression of serine/threonine kinase 11 modulates dendritic cell differentiation. Nat Commun 13(1):648
abstractText  In the bone marrow, classical and plasmacytoid dendritic cells (DC) develop from the macrophage-DC precursor (MDP) through a common DC precursor (CDP) step. This developmental process receives essential input from the niche in which it takes place, containing endothelial cells (EC) among other cell types. Here we show that targeted deletion of serine/threonine kinase 11 (Stk11) encoding tumor suppressor liver kinase b1 (Lkb1) in mouse ECs but not DCs, results in disrupted differentiation of MDPs to CDPs, severe reduction in mature DC numbers and spontaneous tumorigenesis. In wild type ECs, Lkb1 phosphorylates polypyrimidine tract binding protein 1 (Ptbp1) at threonine 138, which regulates stem cell factor (Scf) pre-mRNA splicing. In the absence of Lkb1, exon 6 of Scf is spliced out, leading to the loss of Scf secretion. Adeno-associated-virus-mediated delivery of genes encoding either soluble Scf or the phosphomimetic mutant Ptbp1(T138E) proteins rescued the defects of MDP to CDP differentiation and DC shortage in the endothelium specific Stk11 knockout mice. In summary, endothelial Stk11 expression regulates DC differentiation via modulation of Scf splicing, marking the Stk11-soluble-Scf axis as a potential cause of DC deficiency syndromes.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

17 Bio Entities

Trail: Publication

0 Expression