|  Help  |  About  |  Contact Us

Publication : Sustained activation of proton channels and NADPH oxidase in human eosinophils and murine granulocytes requires PKC but not cPLA2 alpha activity.

First Author  Morgan D Year  2007
Journal  J Physiol Volume  579
Issue  Pt 2 Pages  327-44
PubMed ID  17185330 Mgi Jnum  J:140843
Mgi Id  MGI:3814682 Doi  10.1113/jphysiol.2006.124248
Citation  Morgan D, et al. (2007) Sustained activation of proton channels and NADPH oxidase in human eosinophils and murine granulocytes requires PKC but not cPLA2 alpha activity. J Physiol 579(Pt 2):327-44
abstractText  The prevailing hypothesis that a signalling pathway involving cPLA(2)alpha is required to enhance the gating of the voltage-gated proton channel associated with NADPH oxidase was tested in human eosinophils and murine granulocytes. This hypothesis invokes arachidonic acid (AA) liberated by cPLA(2)alpha as a final activator of proton channels. In human eosinophils studied in the perforated-patch configuration, phorbol myristate acetate (PMA) stimulation elicited NADPH oxidase-generated electron current (I(e)) and enhanced proton channel gating identically in the presence or absence of three specific cPLA(2)alpha inhibitors, Wyeth-1, pyrrolidine-2 and AACOCF(3) (arachidonyl trifluoromethyl ketone). In contrast, PKC inhibitors GFX (GF109203X) or staurosporine prevented the activation of either proton channels or NADPH oxidase. PKC inhibition during the respiratory burst reversed the activation of both molecules, suggesting that ongoing phosphorylation is required. This effect of GFX was inhibited by okadaic acid, implicating phosphatases in proton channel deactivation. Proton channel activation by AA was partially reversed by GFX or staurosporine, indicating that AA effects are due in part to activation of PKC. In granulocytes from mice with the cPLA(2)alpha gene disrupted (knockout mice), PMA or fMetLeuPhe activated NADPH oxidase and proton channels in a manner indistinguishable from the responses of control cells. Thus, cPLA(2)alpha is not essential to activate the proton conductance or for a normal respiratory burst. Instead, phosphorylation of the proton channel or an activating molecule converts the channel to its activated gating mode. The existing paradigm for regulation of the concerted activity of proton channels and NADPH oxidase must be revised.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression