|  Help  |  About  |  Contact Us

Publication : Histone Lysine Methyltransferase SETD2 Regulates Coronary Vascular Development in Embryonic Mouse Hearts.

First Author  Chen F Year  2021
Journal  Front Cell Dev Biol Volume  9
Pages  651655 PubMed ID  33898448
Mgi Jnum  J:306392 Mgi Id  MGI:6715390
Doi  10.3389/fcell.2021.651655 Citation  Chen F, et al. (2021) Histone Lysine Methyltransferase SETD2 Regulates Coronary Vascular Development in Embryonic Mouse Hearts. Front Cell Dev Biol 9:651655
abstractText  Congenital heart defects are the most common birth defect and have a clear genetic component, yet genomic structural variations or gene mutations account for only a third of the cases. Epigenomic dynamics during human heart organogenesis thus may play a critical role in regulating heart development. However, it is unclear how histone mark H3K36me3 acts on heart development. Here we report that histone-lysine N-methyltransferase SETD2, an H3K36me3 methyltransferase, is a crucial regulator of the mouse heart epigenome. Setd2 is highly expressed in embryonic stages and accounts for a predominate role of H3K36me3 in the heart. Loss of Setd2 in cardiac progenitors results in obvious coronary vascular defects and ventricular non-compaction, leading to fetus lethality in mid-gestation, without affecting peripheral blood vessel, yolk sac, and placenta formation. Furthermore, deletion of Setd2 dramatically decreased H3K36me3 level and impacted the transcriptional landscape of key cardiac-related genes, including Rspo3 and Flrt2. Taken together, our results strongly suggest that SETD2 plays a primary role in H3K36me3 and is critical for coronary vascular formation and heart development in mice.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

26 Bio Entities

Trail: Publication

0 Expression