|  Help  |  About  |  Contact Us

Publication : Interleukin-1 receptor antagonist prevents murine bronchopulmonary dysplasia induced by perinatal inflammation and hyperoxia.

First Author  Nold MF Year  2013
Journal  Proc Natl Acad Sci U S A Volume  110
Issue  35 Pages  14384-9
PubMed ID  23946428 Mgi Jnum  J:200984
Mgi Id  MGI:5510609 Doi  10.1073/pnas.1306859110
Citation  Nold MF, et al. (2013) Interleukin-1 receptor antagonist prevents murine bronchopulmonary dysplasia induced by perinatal inflammation and hyperoxia. Proc Natl Acad Sci U S A 110(35):14384-9
abstractText  Bronchopulmonary dysplasia (BPD) is a common lung disease of premature infants, with devastating short- and long-term consequences. The pathogenesis of BPD is multifactorial, but all triggers cause pulmonary inflammation. No therapy exists; therefore, we investigated whether the anti-inflammatory interleukin-1 receptor antagonist (IL-1Ra) prevents murine BPD. We precipitated BPD by perinatal inflammation (lipopolysaccharide injection to pregnant dams) and rearing pups in hyperoxia (65% or 85% O2). Pups were treated daily with IL-1Ra or vehicle for up to 28 d. Vehicle-injected animals in both levels of hyperoxia developed a severe BPD-like lung disease (alveolar number and gas exchange area decreased by up to 60%, alveolar size increased up to fourfold). IL-1Ra prevented this structural disintegration at 65%, but not 85% O2. Hyperoxia depleted pulmonary immune cells by 67%; however, extant macrophages and dendritic cells were hyperactivated, with CD11b and GR1 (Ly6G/C) highly expressed. IL-1Ra partially rescued the immune cell population in hyperoxia (doubling the viable cells), reduced the percentage that were activated by up to 63%, and abolished the unexpected persistence of IL-1alpha and IL-1beta on day 28 in hyperoxia/vehicle-treated lungs. On day 3, perinatal inflammation and hyperoxia each triggered a distinct pulmonary immune response, with some proinflammatory mediators increasing up to 20-fold and some amenable to partial or complete reversal with IL-1Ra. In summary, our analysis reveals a pivotal role for IL-1alpha/beta in murine BPD and an involvement for MIP (macrophage inflammatory protein)-1alpha and TREM (triggering receptor expressed on myeloid cells)-1. Because it effectively shields newborn mice from BPD, IL-1Ra emerges as a promising treatment for a currently irremediable disease that may potentially brighten the prognosis of the tiny preterm patients.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression