|  Help  |  About  |  Contact Us

Publication : Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction.

First Author  Qin W Year  2006
Journal  J Biol Chem Volume  281
Issue  31 Pages  21745-54
PubMed ID  16751189 Mgi Jnum  J:116473
Mgi Id  MGI:3694337 Doi  10.1074/jbc.M602909200
Citation  Qin W, et al. (2006) Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281(31):21745-54
abstractText  Nicotinamide adenine dinucleotide (NAD)+-dependent sirtuins have been identified to be key regulators in the lifespan extending effects of calorie restriction (CR) in a number of species. In this study we report for the first time that promotion of the NAD+-dependent sirtuin, SIRT1-mediated deacetylase activity, may be a mechanism by which CR influences Alzheimer disease (AD)-type amyloid neuropathology. Most importantly, we report that the predicted attenuation of beta-amyloid content in the brain during CR can be reproduced in mouse neurons in vitro by manipulating cellular SIRT1 expression/activity through mechanisms involving the regulation of the serine/threonine Rho kinase ROCK1, known in part for its role in the inhibition of the non-amyloidogenic alpha-secretase processing of the amyloid precursor protein. Conversely, we found that the expression of constitutively active ROCK1 in vitro cultures significantly prevented SIRT1-mediated response, suggesting that alpha-secretase activity is required for SIRT1-mediated prevention of AD-type amyloid neuropathology. Consistently we found that the expression of exogenous human (h) SIRT1 in the brain of hSIRT1 transgenics also resulted in decreased ROCK1 expression and elevated alpha-secretase activity in vivo. These results demonstrate for the first time a role for SIRT1 activation in the brain as a novel mechanism through which CR may influence AD amyloid neuropathology. The study provides a potentially novel pharmacological strategy for AD prevention and/or treatment.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression