|  Help  |  About  |  Contact Us

Publication : Demonstration of dimethylnonanoyl-CoA thioesterase activity in rat liver peroxisomes followed by purification and molecular cloning of the thioesterase involved.

First Author  Ofman R Year  2002
Journal  Biochem Biophys Res Commun Volume  290
Issue  2 Pages  629-34
PubMed ID  11785945 Mgi Jnum  J:73929
Mgi Id  MGI:2157203 Doi  10.1006/bbrc.2001.6245
Citation  Ofman R, et al. (2002) Demonstration of dimethylnonanoyl-CoA thioesterase activity in rat liver peroxisomes followed by purification and molecular cloning of the thioesterase involved. Biochem Biophys Res Commun 290(2):629-34
abstractText  Peroxisomes play an indispensable role in cellular fatty acid oxidation in higher eukaryotes by catalyzing the chain shortening of a distinct set of fatty acids and fatty acid derivatives including pristanic acid (2,6,10,14-tetramethylpentadecanoic acid). Earlier studies have shown that pristanic acid undergoes three cycles of beta-oxidation in peroxisomes to produce 4,8-dimethylnonanoyl-CoA (DMN-CoA) which is then transported to the mitochondria for full oxidation to CO(2) and H(2)O. In principle, this can be done via two different mechanisms in which DMN-CoA is either converted into the corresponding carnitine ester or hydrolyzed to 4,8-dimethylnonanoic acid plus CoASH. The latter pathway can only be operational if peroxisomes contain 4,8-dimethylnonanoyl-CoA thioesterase activity. In this paper we show that rat liver peroxisomes indeed contain 4,8-dimethylnonanoyl-CoA thioesterase activity. We have partially purified the enzyme involved from peroxisomes and identified the protein as the rat ortholog of a known human thioesterase using MALDI-TOF mass spectrometry in combination with the rat EST database. Heterologous expression studies in Escherichia coli established that the enzyme hydrolyzes not only DMN-CoA but also other branched-chain acyl-CoAs as well as straight-chain acyl-CoA-esters. Our data provide convincing evidence for the existence of the second pathway of acyl-CoA transport from peroxisomes to mitochondria by hydrolysis of the CoA-ester in peroxisomes followed by transport of the free acid to mitochondria, reactivation to its CoA-ester, and oxidation to CO(2) and H(2)O. (c)2002 Elsevier Science.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression