|  Help  |  About  |  Contact Us

Publication : Roles of Mcm7 and Mcm4 subunits in the DNA helicase activity of the mouse Mcm4/6/7 complex.

First Author  You Z Year  2002
Journal  J Biol Chem Volume  277
Issue  45 Pages  42471-9
PubMed ID  12207017 Mgi Jnum  J:80045
Mgi Id  MGI:2429455 Doi  10.1074/jbc.M205769200
Citation  You Z, et al. (2002) Roles of Mcm7 and Mcm4 subunits in the DNA helicase activity of the mouse Mcm4/6/7 complex. J Biol Chem 277(45):42471-9
abstractText  Mcm, which is composed of six structurally related subunits (Mcm2-7), is essential for eukaryotic DNA replication. A subassembly of Mcm, the Mcm4/6/7 double-trimeric complex, possesses DNA helicase activity, and it has been proposed that Mcm may function as a replicative helicase at replication forks. We show here that conserved ATPase motifs of Mcm7 are essential for ATPase and DNA helicase activities of the Mcm4/6/7 complex. Because uncomplexed Mcm7 displayed neither ATPase nor DNA helicase activity, Mcm7 contributes to the DNA helicase activity of the Mcm complex through interaction with other subunits. In contrast, the Mcm4/6/7 complex containing a zinc finger mutant of Mcm4 with partially impaired DNA binding activity exhibited elevated DNA helicase activity. The Mcm4/6/7 complex containing this Mcm4 mutant tended to dissociate into trimeric complexes, suggesting that the zinc finger of Mcm4 is involved in subunit interactions of trimers. The Mcm4 mutants lacking the N-terminal 35 or 112 amino acids could form hexameric Mcm4/6/7 complexes, but displayed very little DNA helicase activity. In conjunction with the previously reported essential role of Mcm6 in ATP binding (You, Z., Komamura, Y., and Ishimi, Y. (1999) Mol. Cell. Biol. 19, 8003-8015), our data indicate distinct roles of Mcm4, Mcm6, and Mcm7 subunits in activation of the DNA helicase activity of the Mcm4/6/7 complex.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression