First Author | Yin W | Year | 2019 |
Journal | Am J Respir Cell Mol Biol | Volume | 61 |
Issue | 3 | Pages | 312-321 |
PubMed ID | 30896965 | Mgi Jnum | J:295985 |
Mgi Id | MGI:6455524 | Doi | 10.1165/rcmb.2017-0387OC |
Citation | Yin W, et al. (2019) Mice with a Deletion of Rsph1 Exhibit a Low Level of Mucociliary Clearance and Develop a Primary Ciliary Dyskinesia Phenotype. Am J Respir Cell Mol Biol 61(3):312-321 |
abstractText | Primary ciliary dyskinesia (PCD) is a genetically and phenotypically heterogeneous disease caused by mutations in over 40 different genes. Individuals with PCD caused by mutations in RSPH1 (radial spoke head 1 homolog) have been reported to have a milder phenotype than other individuals with PCD, as evidenced by a lower incidence of neonatal respiratory distress, higher nasal nitric oxide concentrations, and better lung function. To better understand genotype-phenotype relationships in PCD, we have characterized a mutant mouse model with a deletion of Rsph1. Approximately 50% of cilia from Rsph1(-/-) cells appeared normal by transmission EM, whereas the remaining cilia revealed a range of defects, primarily transpositions or a missing central pair. Ciliary beat frequency in Rsph1(-/-) cells was significantly lower than in control cells (20.2 +/- 0.8 vs. 25.0 +/- 0.9 Hz), and the cilia exhibited an aberrant rotational waveform. Young Rsph1(-/-) animals demonstrated a low rate of mucociliary clearance in the nasopharynx that was reduced to zero by about 1 month of age. Rsph1(-/-) animals accumulated mucus in the nasal cavity but had a lower bacterial burden than animals with a deletion of dynein axonemal intermediate chain 1 (Dnaic1(-/-)). Thus, Rsph1(-/-) mice display a PCD phenotype similar to but less severe than that observed in Dnaic1(-/-) mice, similar to what has been observed in humans. The results suggest that some individuals with PCD may not have a complete loss of mucociliary clearance and further suggest that early diagnosis and intervention may be important to maintain this low amount of clearance. |