|  Help  |  About  |  Contact Us

Publication : Neurodegeneration in the Niemann-Pick C mouse: glial involvement.

First Author  German DC Year  2002
Journal  Neuroscience Volume  109
Issue  3 Pages  437-50
PubMed ID  11823057 Mgi Jnum  J:126856
Mgi Id  MGI:3762104 Doi  10.1016/s0306-4522(01)00517-6
Citation  German DC, et al. (2002) Neurodegeneration in the Niemann-Pick C mouse: glial involvement. Neuroscience 109(3):437-50
abstractText  A mouse model of Niemann-Pick type C disease has been found that exhibits neuropathology similar to the human condition. There is an age-related neurodegeneration in several brain regions and a lack of myelin in the corpus callosum in these mice. The purpose of the present study was to examine the Niemann-Pick mouse and determine whether: (1) microglia and astrocytes exhibit ultrastructural pathology similar to that found in neurons; (2) nerve fiber number is reduced when the myelin sheath is absent; and (3) the lysosomal hydrolase, cathepsin-D, is involved in the neurodegenerative process. Using light and electron microscopic methods, and immunocytochemistry, Niemann-Pick and control animals were examined at several ages. Cathepsin-D content was semi-quantitatively measured in neurons and glial cells in brain regions known to exhibit neurodegeneration, as was the density of glial fibrillary acidic protein-labeled astrocytes. The Niemann-Pick mouse exhibited: (1) an age-related increase in inclusion bodies in microglia and astrocytes, similar to that observed within neurons; (2) an almost complete absence of myelin in the corpus callosum by 7-8 weeks of age, along with a 30% reduction in the number of corpus callosum axons; (3) a mild age-related increase in cathepsin-D content within nerve cells in many brain regions. However, the cathepsin-D elevation was greatest in microglial cells; (4) an age-related increase in the number of microglial cells containing intense cathepsin-D immunoreactivity in both the thalamus and cerebellum. Both of these brain regions have been shown previously to exhibit an age-related loss of neurons; and (5) an increase in the number of reactive astrocytes immunostained for glial fibrillary acidic protein, especially in the thalamus and cerebellum.These data indicate that glial cells are a major target for pathology in the Niemann-Pick mouse. The lack of myelin within the corpus callosum may be related to the loss of nerve fibers in this structure. The increase in cathepsin-D-laden microglial cells, in brain regions previously shown to undergo neurodegeneration, is consistent with a role for microglia in the phagocytosis of dead neurons and in actively contributing to the neurodegenerative process. The activation of astrocytes in regions that undergo neurodegeneration is also consistent with a role for these glial cells in the neurodegenerative process.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression