|  Help  |  About  |  Contact Us

Publication : Lipocalin 2 deficiency-induced gut microbiota dysbiosis evokes metabolic syndrome in aged mice.

First Author  Singh V Year  2020
Journal  Physiol Genomics Volume  52
Issue  8 Pages  314-321
PubMed ID  32628083 Mgi Jnum  J:329481
Mgi Id  MGI:6835752 Doi  10.1152/physiolgenomics.00118.2019
Citation  Singh V, et al. (2020) Lipocalin 2 deficiency-induced gut microbiota dysbiosis evokes metabolic syndrome in aged mice. Physiol Genomics 52(8):314-321
abstractText  Lipocalin 2 (Lcn2) is a multifunctional innate immune protein that limits microbial overgrowth. Our previous study demonstrated that the gut microbiota directly induces intestinal Lcn2 production, and Lcn2-deficient (Lcn2(-/-)) mice exhibit gut dysbiosis. Coincidentally, gut dysbiosis is associated with metabolic syndrome pathogenesis, and elevated Lcn2 levels has been considered a potential clinical biomarker of metabolic syndrome. Yet whether Lcn2 mitigates or exacerbates metabolic syndrome remains inconclusive. Our objective was to determine whether Lcn2 deficiency-induced compositional changes in gut microbiota contribute to gain in adiposity in aged mice. Utilizing Lcn2(-/-) mice and their wild-type (WT) littermates, we measured metabolic markers, including fasting blood glucose, serum lipids, fat pad weight, and insulin resistance at ages 3, 6, and 9 mo old. Relative to WT mice, aged Lcn2(-/-) mice exhibited a gain in adiposity associated with numerous features of metabolic syndrome, including insulin resistance and dyslipidemia. Surprisingly, supplementation with a high-fat diet did not further aggravate metabolic syndrome that spontaneously occurs in Lcn2(-/-) mice by 6 mo of age. Interestingly, chow-fed Lcn2(-/-) mice displayed marked differences in the bacterial abundance and metabolomic profile of the gut microbiota compared with WT mice. Overall, our results demonstrate that Lcn2 is essential to maintain metabolic and gut microbiotal homeostasis, where deficiency induces spontaneous delayed onset of metabolic syndrome.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression