|  Help  |  About  |  Contact Us

Publication : Disease expression in +-/+- ----mdg/mdg mouse chimeras: evidence for an extramuscular component in the pathogenesis of both dysgenic abnormal diaphragm innervation and skeletal muscle 16 S acetylcholinesterase deficiency.

First Author  Rieger F Year  1984
Journal  Dev Biol Volume  106
Issue  2 Pages  296-306
PubMed ID  6500174 Mgi Jnum  J:7644
Mgi Id  MGI:56113 Doi  10.1016/0012-1606(84)90228-8
Citation  Rieger F, et al. (1984) Disease expression in +-/+- ----mdg/mdg mouse chimeras: evidence for an extramuscular component in the pathogenesis of both dysgenic abnormal diaphragm innervation and skeletal muscle 16 S acetylcholinesterase deficiency. Dev Biol 106(2):296-306
abstractText  Homozygous mdg/mdg mice die at birth and express a syndrome of abnormalities, the most striking of which is a gross failure of skeletal muscle development. Recently, additional abnormalities in the development of nerve-muscle relationships have been recognized; in particular, on muscle fibers within the diaphragm, motor end plates are inappropriately dispersed and, in all muscles, there is a paucity of the 16 S form of acetylcholinesterase (AChE). These abnormalities could result entirely as secondary consequences of the primary muscle defect or from expression of the mdg defect in additional cell types, e.g., motor neurons. To determine if the muscle genotype alone is responsible for these defects in dysgenic mice, chimeras composed of both dysgenic and normal cells have been investigated. Different glucosephosphate isomerase variants existed in the mdg/mdg and normal cells comprising these chimeras and the mutant, normal, or mosaic genotypes of chimera diaphragm and skeletal muscle was estimated by measuring the relative proportions of each isozyme. In two chimeras, the diaphragm innervation pattern was revealed by AChE cytochemistry and in both, discrete regions of abnormally dispersed and normally restricted motor end-plate zones were observed. No correlation between these patterns of innervation and the assessed genotype of the muscle fibers existing in each area was observed. The relative 16 S AChE content in the limbs of four chimeras was found to range from 2.5 to 42.0%. Here also, no correlation between 16 S AChE content and the muscle genotype was observed. The results of these investigations are not consistent with a model of mdg/mdg pathogenesis in which only the skeletal muscle is primarily affected; an extramuscular deficiency responsible for at least part of the full mdg/mdg syndrome is therefore suggested.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression