First Author | Ohta T | Year | 2008 |
Journal | J Biol Chem | Volume | 283 |
Issue | 14 | Pages | 9377-87 |
PubMed ID | 18230619 | Mgi Jnum | J:135348 |
Mgi Id | MGI:3793410 | Doi | 10.1074/jbc.M709377200 |
Citation | Ohta T, et al. (2008) Novel gating and sensitizing mechanism of capsaicin receptor (TRPV1): tonic inhibitory regulation of extracellular sodium through the external protonation sites on TRPV1. J Biol Chem 283(14):9377-87 |
abstractText | Transient receptor potential V1 (TRPV1) is a nonselective cation channel expressed in nociceptors and activated by capsaicin. TRPV1 detects diverse stimuli, including acid, heat, and endogenous vanilloids, and functions as a molecular integrator of pain perception. Herein we demonstrate a novel regulatory role of extracellular Na(+) ([Na(+)](o)) on TRPV1 function. In human embryonic kidney 293 cells expressing porcine TRPV1, low [Na(+)](o) evoked increases of [Ca(2+)](i) that were suppressed by TRPV1 antagonists and facilitated responses to capsaicin, protons, heat, and an endovanilloid. [Na(+)](o) removal simultaneously elicited a [Ca(2+)](i) increase and outward-rectified current with a reversal potential similar to those of capsaicin. Neutralization of the two acidic residues which confer the proton sensitivity to TRPV1 resulted in a reduction of low [Na(+)](o)-induced responses. In primary culture of porcine sensory neurons, the removal of [Na(+)](o) produced a [Ca(2+)](i) increase and current responses only in the cells responding to capsaicin. Low [Na(+)](o) evoked a [Ca(2+)](i) increase in sensory neurons of wild type mice, but not TRPV1-null mice, and in human embryonic kidney 293 cells expressing human TRPV1. The present results suggest that [Na(+)](o) negatively regulates the gating and polymodal sensitization of the TRPV1 channel. [Na(+)](o) surrounding several proton-sensitive sites on the extracellular side of the pore-forming loop of the TRPV1 channel may play an important role as a brake to suppress the excessive activity of this channel under physiological conditions. |