|  Help  |  About  |  Contact Us

Publication : PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection.

First Author  Tran MT Year  2016
Journal  Nature Volume  531
Issue  7595 Pages  528-32
PubMed ID  26982719 Mgi Jnum  J:232716
Mgi Id  MGI:5779988 Doi  10.1038/nature17184
Citation  Tran MT, et al. (2016) PGC1alpha drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature 531(7595):528-32
abstractText  The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischaemia. Acute kidney injury (AKI) affects 3% of all hospitalized patients. Here we show that the mitochondrial biogenesis regulator, PGC1alpha, is a pivotal determinant of renal recovery from injury by regulating nicotinamide adenine dinucleotide (NAD) biosynthesis. Following renal ischaemia, Pgc1alpha(-/-) (also known as Ppargc1a(-/-)) mice develop local deficiency of the NAD precursor niacinamide (NAM, also known as nicotinamide), marked fat accumulation, and failure to re-establish normal function. Notably, exogenous NAM improves local NAD levels, fat accumulation, and renal function in post-ischaemic Pgc1alpha(-/-) mice. Inducible tubular transgenic mice (iNephPGC1alpha) recapitulate the effects of NAM supplementation, including more local NAD and less fat accumulation with better renal function after ischaemia. PGC1alpha coordinately upregulates the enzymes that synthesize NAD de novo from amino acids whereas PGC1alpha deficiency or AKI attenuates the de novo pathway. NAM enhances NAD via the enzyme NAMPT and augments production of the fat breakdown product beta-hydroxybutyrate, leading to increased production of prostaglandin PGE2 (ref. 5), a secreted autacoid that maintains renal function. NAM treatment reverses established ischaemic AKI and also prevented AKI in an unrelated toxic model. Inhibition of beta-hydroxybutyrate signalling or prostaglandin production similarly abolishes PGC1alpha-dependent renoprotection. Given the importance of mitochondrial health in ageing and the function of metabolically active organs, the results implicate NAM and NAD as key effectors for achieving PGC1alpha-dependent stress resistance.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

Trail: Publication

0 Expression