|  Help  |  About  |  Contact Us

Publication : Exercise training boosts eNOS-dependent mitochondrial biogenesis in mouse heart: role in adaptation of glucose metabolism.

First Author  Vettor R Year  2014
Journal  Am J Physiol Endocrinol Metab Volume  306
Issue  5 Pages  E519-28
PubMed ID  24381004 Mgi Jnum  J:211616
Mgi Id  MGI:5575736 Doi  10.1152/ajpendo.00617.2013
Citation  Vettor R, et al. (2014) Exercise training boosts eNOS-dependent mitochondrial biogenesis in mouse heart: role in adaptation of glucose metabolism. Am J Physiol Endocrinol Metab 306(5):E519-28
abstractText  Endurance exercise training increases cardiac energy metabolism through poorly understood mechanisms. Nitric oxide (NO) produced by endothelial NO synthase (eNOS) in cardiomyocytes contributes to cardiac adaptation. Here we demonstrate that the NO donor diethylenetriamine-NO (DETA-NO) activated mitochondrial biogenesis and function, as assessed by upregulated peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha), nuclear respiratory factor 1, and mitochondrial transcription factor A (Tfam) expression, and by increased mitochondrial DNA content and citrate synthase activity in primary mouse cardiomyocytes. DETA-NO also induced mitochondrial biogenesis and function and enhanced both basal and insulin-stimulated glucose uptake in HL-1 cardiomyocytes. The DETA-NO-mediated effects were suppressed by either PGC-1alpha or Tfam small-interference RNA in HL-1 cardiomyocytes. Wild-type and eNOS(-/-) mice were subjected to 6 wk graduated swim training. We found that eNOS expression, mitochondrial biogenesis, mitochondrial volume density and number, and both basal and insulin-stimulated glucose uptake were increased in left ventricles of swim-trained wild-type mice. On the contrary, the genetic deletion of eNOS prevented all these adaptive phenomena. Our findings demonstrate that exercise training promotes eNOS-dependent mitochondrial biogenesis in heart, which behaves as an essential step in cardiac glucose transport.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression