|  Help  |  About  |  Contact Us

Publication : Astrocytes from Na(+)-K(+)-Cl(-) cotransporter-null mice exhibit absence of swelling and decrease in EAA release.

First Author  Su G Year  2002
Journal  Am J Physiol Cell Physiol Volume  282
Issue  5 Pages  C1147-60
PubMed ID  11940530 Mgi Jnum  J:284976
Mgi Id  MGI:6392919 Doi  10.1152/ajpcell.00538.2001
Citation  Su G, et al. (2002) Astrocytes from Na(+)-K(+)-Cl(-) cotransporter-null mice exhibit absence of swelling and decrease in EAA release. Am J Physiol Cell Physiol 282(5):C1147-60
abstractText  We reported previously that inhibition of Na(+)-K(+)-Cl(-) cotransporter isoform 1 (NKCC1) by bumetanide abolishes high extracellular K(+) concentration ([K(+)](o))-induced swelling and intracellular Cl(-) accumulation in rat cortical astrocytes. In this report, we extended our study by using cortical astrocytes from NKCC1-deficient (NKCC1(-/-)) mice. NKCC1 protein and activity were absent in NKCC1(-/-) astrocytes. [K(+)](o) of 75 mM increased NKCC1 activity approximately fourfold in NKCC1(+/+) cells (P < 0.05) but had no effect in NKCC1(-/-) astrocytes. Intracellular Cl(-) was increased by 70% in NKCC1(+/+) astrocytes under 75 mM [K(+)](o) (P < 0.05) but remained unchanged in NKCC1(-/-) astrocytes. Baseline intracellular Na(+) concentration ([Na(+)](i)) in NKCC1(+/+) astrocytes was 19.0 +/- 0.5 mM, compared with 16.9 +/- 0.3 mM [Na(+)](i) in NKCC1(-/-) astrocytes (P < 0.05). Relative cell volume of NKCC1(+/+) astrocytes increased by 13 +/- 2% in 75 mM [K(+)](o), compared with a value of 1.0 +/- 0.5% in NKCC1(-/-) astrocytes (P < 0.05). Regulatory volume increase after hypertonic shrinkage was completely impaired in NKCC1(-/-) astrocytes. High-[K(+)](o)-induced (14)C-labeled D-aspartate release was reduced by approximately 30% in NKCC1(-/-) astrocytes. Our study suggests that stimulation of NKCC1 is required for high-[K(+)](o)-induced swelling, which contributes to glutamate release from astrocytes under high [K(+)](o).
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression