|  Help  |  About  |  Contact Us

Publication : Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals.

First Author  Shao JS Year  2005
Journal  J Clin Invest Volume  115
Issue  5 Pages  1210-20
PubMed ID  15841209 Mgi Jnum  J:98092
Mgi Id  MGI:3577137 Doi  10.1172/JCI24140
Citation  Shao JS, et al. (2005) Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J Clin Invest 115(5):1210-20
abstractText  In diabetic LDLR-/- mice, an ectopic BMP2-Msx2 gene regulatory program is upregulated in association with vascular calcification. We verified the procalcific actions of aortic Msx2 expression in vivo. CMV-Msx2 transgenic (CMV-Msx2Tg(+)) mice expressed 3-fold higher levels of aortic Msx2 than nontransgenic littermates. On high-fat diets, CMV-Msx2Tg(+) mice exhibited marked cardiovascular calcification involving aortic and coronary tunica media. This corresponded to regions of Msx2 immunoreactivity in adjacent adventitial myofibroblasts, suggesting a potential paracrine osteogenic signal. To better understand Msx2-regulated calcification, we studied actions in 10T1/2 cells. We found that conditioned media from Msx2-transduced 10T1/2 cells (Msx2-CM) is both pro-osteogenic and adipostatic; these features are characteristic of Wnt signaling. Msx2-CM stimulated Wnt-dependent TCF/LEF transcription, and Msx2-transduced cells exhibited increased nuclear beta-catenin localization with concomitant alkaline phosphatase induction. Msx2 upregulated Wnt3a and Wnt7a but downregulated expression of the canonical inhibitor Dkk1. Dkk1 treatment reversed osteogenic and adipostatic actions of Msx2. Teriparatide, a PTH1R agonist that inhibits murine vascular calcification, suppressed vascular BMP2-Msx2-Wnt signaling. Analyses of CMV-Msx2Tg(+) mice confirmed that Msx2 suppresses aortic Dkk1 and upregulates vascular Wnts; moreover, TOPGAL(+) (Wnt reporter); CMV-Msx2Tg(+) mice exhibited augmented aortic LacZ expression. Thus, Msx2-expressing cells elaborated an osteogenic milieu that promotes vascular calcification in part via paracrine Wnt signals.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression