|  Help  |  About  |  Contact Us

Publication : Increase in tension-dependent ATP consumption induced by cardiac troponin T mutation.

First Author  Chandra M Year  2005
Journal  Am J Physiol Heart Circ Physiol Volume  289
Issue  5 Pages  H2112-9
PubMed ID  15994854 Mgi Jnum  J:104771
Mgi Id  MGI:3612765 Doi  10.1152/ajpheart.00571.2005
Citation  Chandra M, et al. (2005) Increase in tension-dependent ATP consumption induced by cardiac troponin T mutation. Am J Physiol Heart Circ Physiol 289(5):H2112-9
abstractText  How different mutations in cardiac troponin T (cTnT) lead to distinct secondary downstream cellular remodeling in familial hypertrophic cardiomyopathy (FHC) remains elusive. To explore the molecular basis for the distinct impact of different mutations in cTnT on cardiac myocytes, we studied mechanical activity of detergent-skinned muscle fiber bundles from different lines of transgenic (TG) mouse hearts that express wild-type cTnT (WTTG), R92W cTnT, R92L cTnT, and Delta-160 cTnT (deletion of amino acid 160). The amount of mutant cTnT is approximately 50% of the total myocellular cTnT in both R92W and R92L TG mouse hearts and approximately 35% in Delta-160 TG mouse hearts. Myofilament Ca2+ sensitivity was enhanced in all mutant cTnT TG cardiac muscle fibers. Compared with the WTTG fibers, Ca2+ sensitivity increased significantly at short sarcomere length (SL) of 1.9 microm (P < 0.001) in R92W TG fibers by 2.2-fold, in R92L by 2.0-fold, and in Delta-160 by 1.3-fold. At long SL of 2.3 microm, Ca2+ sensitivity increased significantly (P < 0.01) in a similar manner (R92W, 2.5-fold; R92L, 1.9-fold; Delta-160, 1.3-fold). Ca2+-activated maximal tension remained unaltered in all TG muscle fibers. However, tension-dependent ATP consumption increased significantly in Delta-160 TG muscle fibers at both short SL (23%, P < 0.005) and long SL (37%, P < 0.0001), suggesting a mutation-induced change in cross-bridge detachment rate constant. Chronic stresses on relative cellular ATP level in cardiac myocytes may cause a strain on energy-dependent Ca2+ homeostatic mechanisms. This may result in pathological remodeling that we observed in Delta-160 TG cardiac myocytes where the ratio of sarco(endo)plasmic reticulum Ca2+-ATPase 2/phospholamban decreased significantly. Our results suggest that different types of stresses imposed on cardiac myocytes would trigger distinct cellular signaling, which leads to remodeling that may be unique to some mutants.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

10 Bio Entities

Trail: Publication

0 Expression