|  Help  |  About  |  Contact Us

Publication : Generation of N-ethyl-N-nitrosourea-induced mouse mutants with deviations in plasma enzyme activities as novel organ-specific disease models.

First Author  Aigner B Year  2009
Journal  Exp Physiol Volume  94
Issue  4 Pages  412-21
PubMed ID  19151073 Mgi Jnum  J:187875
Mgi Id  MGI:5438476 Doi  10.1113/expphysiol.2008.045864
Citation  Aigner B, et al. (2009) Generation of N-ethyl-N-nitrosourea-induced mouse mutants with deviations in plasma enzyme activities as novel organ-specific disease models. Exp Physiol 94(4):412-21
abstractText  Measurement of plasma enzyme activities is part of routine medical examination protocols and provides valuable parameters for the diagnosis of various organ diseases. In the phenotype-driven Munich N-ethyl-N-nitrosourea (ENU) mouse mutagenesis project, clinical chemical blood analysis was carried out on more than 20,000 G1 and G3 offspring of chemically mutagenized inbred C3H mice to detect dominant and recessive mutations leading to deviations in the plasma enzyme activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, alpha-amylase and creatine kinase. We identified a large number of animals that consistently exhibited altered plasma enzyme activities. Transmission of the phenotypic deviations to the subsequent generations led to the successful establishment of mutant lines for each parameter. Breeding experiments in selected lines detected the linkage of the causative mutations to defined chromosomal regions. Subsequently, identification of the mutated genes was successfully carried out in chosen lines, resulting in a novel alkaline phosphatase liver/bone/kidney (Alpl) alteration in one line and the strong indication for a dystrophin (Dmd) alteration in another line. The mouse mutants with abnormal plasma enzyme activities recovered in the Munich ENU project are novel tools for the systematic dissection of the pathogenesis of organ diseases.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

51 Bio Entities

Trail: Publication

0 Expression