|  Help  |  About  |  Contact Us

Publication : Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer's disease.

First Author  Dineley KT Year  2001
Journal  J Neurosci Volume  21
Issue  12 Pages  4125-33
PubMed ID  11404397 Mgi Jnum  J:239214
Mgi Id  MGI:5825438 Doi  10.1523/JNEUROSCI.21-12-04125.2001
Citation  Dineley KT, et al. (2001) Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer's disease. J Neurosci 21(12):4125-33
abstractText  Alzheimer's Disease (AD) is the most common of the senile dementias, the prevalence of which is increasing rapidly, with a projected 14 million affected worldwide by 2025. The signal transduction mechanisms that underlie the learning and memory derangements in AD are poorly understood. beta-Amyloid (Abeta) peptides are elevated in brain tissue of AD patients and are the principal component of amyloid plaques, a major criterion for postmortem diagnosis of the disease. Using acute and organotypic hippocampal slice preparations, we demonstrate that Abeta peptide 1-42 (Abeta42) couples to the mitogen-activated protein kinase (MAPK) cascade via alpha7 nicotinic acetylcholine receptors (nAChRs). In vivo elevation of Abeta, such as that exhibited in an animal model for AD, leads to the upregulation of alpha7 nAChR protein. alpha7 nAChR upregulation occurs concomitantly with the downregulation of the 42 kDa isoform of extracellular signal-regulated kinase (ERK2) MAPK in hippocampi of aged animals. The phosphorylation state of a transcriptional mediator of long-term potentiation and a downstream target of the ERK MAPK cascade, the cAMP-regulatory element binding (CREB) protein, were affected also. These findings support the model that derangement of hippocampus signal transduction cascades in AD arises as a consequence of increased Abeta burden and chronic activation of the ERK MAPK cascade in an alpha7 nAChR-dependent manner that eventually leads to the downregulation of ERK2 MAPK and decreased phosphorylation of CREB protein.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

Trail: Publication

0 Expression