|  Help  |  About  |  Contact Us

Publication : Ryanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure.

First Author  van Oort RJ Year  2010
Journal  Circulation Volume  122
Issue  25 Pages  2669-79
PubMed ID  21098440 Mgi Jnum  J:179475
Mgi Id  MGI:5302469 Doi  10.1161/CIRCULATIONAHA.110.982298
Citation  van Oort RJ, et al. (2010) Ryanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure. Circulation 122(25):2669-79
abstractText  BACKGROUND: approximately half of patients with heart failure die suddenly as a result of ventricular arrhythmias. Although abnormal Ca(2+) release from the sarcoplasmic reticulum through ryanodine receptors (RyR2) has been linked to arrhythmogenesis, the molecular mechanisms triggering release of arrhythmogenic Ca(2+) remain unknown. We tested the hypothesis that increased RyR2 phosphorylation by Ca(2+)/calmodulin-dependent protein kinase II is both necessary and sufficient to promote lethal ventricular arrhythmias. METHODS AND RESULTS: mice in which the S2814 Ca(2+)/calmodulin-dependent protein kinase II site on RyR2 is constitutively activated (S2814D) develop pathological sarcoplasmic reticulum Ca(2+) release events, resulting in reduced sarcoplasmic reticulum Ca(2+) load on confocal microscopy. These Ca(2+) release events are associated with increased RyR2 open probability in lipid bilayer preparations. At baseline, young S2814D mice have structurally and functionally normal hearts without arrhythmias; however, they develop sustained ventricular tachycardia and sudden cardiac death on catecholaminergic provocation by caffeine/epinephrine or programmed electric stimulation. Young S2814D mice have a significant predisposition to sudden arrhythmogenic death after transverse aortic constriction surgery. Finally, genetic ablation of the Ca(2+)/calmodulin-dependent protein kinase II site on RyR2 (S2814A) protects mutant mice from pacing-induced arrhythmias versus wild-type mice after transverse aortic constriction surgery. CONCLUSIONS: our results suggest that Ca(2+)/calmodulin-dependent protein kinase II phosphorylation of RyR2 Ca(2+) release channels at S2814 plays an important role in arrhythmogenesis and sudden cardiac death in mice with heart failure.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

Trail: Publication

0 Expression