|  Help  |  About  |  Contact Us

Publication : Autism candidate gene DIP2A regulates spine morphogenesis via acetylation of cortactin.

First Author  Ma J Year  2019
Journal  PLoS Biol Volume  17
Issue  10 Pages  e3000461
PubMed ID  31600191 Mgi Jnum  J:280803
Mgi Id  MGI:6364690 Doi  10.1371/journal.pbio.3000461
Citation  Ma J, et al. (2019) Autism candidate gene DIP2A regulates spine morphogenesis via acetylation of cortactin. PLoS Biol 17(10):e3000461
abstractText  Dendritic spine development is crucial for the establishment of excitatory synaptic connectivity and functional neural circuits. Alterations in spine morphology and density have been associated with multiple neurological disorders. Autism candidate gene disconnected-interacting protein homolog 2 A (DIP2A) is known to be involved in acetylated coenzyme A (Ac-CoA) synthesis and is primarily expressed in the brain regions with abundant pyramidal neurons. However, the role of DIP2A in the brain remains largely unknown. In this study, we found that deletion of Dip2a in mice induced defects in spine morphogenesis along with thin postsynaptic density (PSD), and reduced synaptic transmission of pyramidal neurons. We further identified that DIP2A interacted with cortactin, an activity-dependent spine remodeling protein. The binding activity of DIP2A-PXXP motifs (P, proline; X, any residue) with the cortactin-Src homology 3 (SH3) domain was critical for maintaining the level of acetylated cortactin. Furthermore, Dip2a knockout (KO) mice exhibited autism-like behaviors, including excessive repetitive behaviors and defects in social novelty. Importantly, acetylation mimetic cortactin restored the impaired synaptic transmission and ameliorated repetitive behaviors in these mice. Altogether, our findings establish an initial link between DIP2A gene variations in autism spectrum disorder (ASD) and highlight the contribution of synaptic protein acetylation to synaptic processing.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

45 Bio Entities

Trail: Publication

136 Expression

Trail: Publication