|  Help  |  About  |  Contact Us

Publication : Molecular and genetic characterization of GABP beta.

First Author  de la Brousse FC Year  1994
Journal  Genes Dev Volume  8
Issue  15 Pages  1853-65
PubMed ID  7958862 Mgi Jnum  J:19614
Mgi Id  MGI:67763 Doi  10.1101/gad.8.15.1853
Citation  de la Brousse FC, et al. (1994) Molecular and genetic characterization of GABP beta. Genes Dev 8(15):1853-65
abstractText  This report outlines three observations relating to GABP beta, a polypeptide constituent of the heterotetrameric transcription factor GABP. Evidence is presented showing that the mouse genome encodes two highly related GABP beta polypeptides, designated GABP beta 1-1 and GABP beta 2-1. Genomic and cDNA copies of the newly defined Gabpb2 gene were cloned and characterized, providing the conceptually translated amino acid sequence of GABP beta 2-1. The genes encoding these two proteins, as well as GABP alpha, were mapped to three unlinked chromosomal loci. Although physically unlinked, the patterns of expression of the three genes were strikingly concordant. Finally, the molecular basis of GABP beta dimerization was resolved. Carboxy-terminal regions of the two GABP beta polypeptides, which mediate dimerization, bear highly related primary amino acid sequences. Both sequences are free of alpha-helix destabilizing residues and, when displayed on idealized alpha-helical projections, reveal marked amphipathy. Two observations indicate that these regions adopt an alpha-helical conformation and intertwine as coiled-coils. First, the dimer-forming region of GABP beta 2-1 can functionally replace the leucine zipper of a bZIP transcription factor. Second, a synthetic peptide corresponding to this region shows distinctive helical properties when examined by circular dichroism spectroscopy. Finally, evidence is presented showing that GABP beta 1-1 and GABP beta 2-1 can heterodimerize through this carboxy-terminal domain, but neither protein can heterodimerize via the dimer-forming region of the bZIP protein C/EBP beta.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

38 Bio Entities

Trail: Publication

0 Expression