|  Help  |  About  |  Contact Us

Publication : In Vivo Ryr2 Editing Corrects Catecholaminergic Polymorphic Ventricular Tachycardia.

First Author  Pan X Year  2018
Journal  Circ Res Volume  123
Issue  8 Pages  953-963
PubMed ID  30355031 Mgi Jnum  J:292074
Mgi Id  MGI:6447133 Doi  10.1161/CIRCRESAHA.118.313369
Citation  Pan X, et al. (2018) In Vivo Ryr2 Editing Corrects Catecholaminergic Polymorphic Ventricular Tachycardia. Circ Res 123(8):953-963
abstractText  RATIONALE: Autosomal-dominant mutations in ryanodine receptor type 2 ( RYR2) are responsible for approximately 60% of all catecholaminergic polymorphic ventricular tachycardia. Dysfunctional RyR2 subunits trigger inappropriate calcium leak from the tetrameric channel resulting in potentially lethal ventricular tachycardia. In vivo CRISPR/Cas9-mediated gene editing is a promising strategy that could be used to eliminate the disease-causing Ryr2 allele and hence rescue catecholaminergic polymorphic ventricular tachycardia. OBJECTIVE: To determine if somatic in vivo genome editing using the CRISPR/Cas9 system delivered by adeno-associated viral (AAV) vectors could correct catecholaminergic polymorphic ventricular tachycardia arrhythmias in mice heterozygous for RyR2 mutation R176Q (R176Q/+). METHODS AND RESULTS: Guide RNAs were designed to specifically disrupt the R176Q allele in the R176Q/+ mice using the SaCas9 ( Staphylococcus aureus Cas9) genome editing system. AAV serotype 9 was used to deliver Cas9 and guide RNA to neonatal mice by single subcutaneous injection at postnatal day 10. Strikingly, none of the R176Q/+ mice treated with AAV-CRISPR developed arrhythmias, compared with 71% of R176Q/+ mice receiving control AAV serotype 9. Total Ryr2 mRNA and protein levels were significantly reduced in R176Q/+ mice, but not in wild-type littermates. Targeted deep sequencing confirmed successful and highly specific editing of the disease-causing R176Q allele. No detectable off-target mutagenesis was observed in the wild-type Ryr2 allele or the predicted putative off-target site, confirming high specificity for SaCas9 in vivo. In addition, confocal imaging revealed that gene editing normalized the enhanced Ca(2+) spark frequency observed in untreated R176Q/+ mice without affecting systolic Ca(2+) transients. CONCLUSIONS: AAV serotype 9-based delivery of the SaCas9 system can efficiently disrupt a disease-causing allele in cardiomyocytes in vivo. This work highlights the potential of somatic genome editing approaches for the treatment of lethal autosomal-dominant inherited cardiac disorders, such as catecholaminergic polymorphic ventricular tachycardia.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression