|  Help  |  About  |  Contact Us

Publication : Involvement of the neurotensin receptor 1 in the behavioral effects of two neurotensin agonists, NT-2 and NT69L: lack of hypothermic, antinociceptive and antipsychotic actions in receptor knockout mice.

First Author  Mechanic JA Year  2009
Journal  Eur Neuropsychopharmacol Volume  19
Issue  7 Pages  466-75
PubMed ID  19223157 Mgi Jnum  J:155994
Mgi Id  MGI:4418433 Doi  10.1016/j.euroneuro.2009.01.004
Citation  Mechanic JA, et al. (2009) Involvement of the neurotensin receptor 1 in the behavioral effects of two neurotensin agonists, NT-2 and NT69L: lack of hypothermic, antinociceptive and antipsychotic actions in receptor knockout mice. Eur Neuropsychopharmacol 19(7):466-75
abstractText  Neurotensin (NT) is a neuropeptide implicated in the pathophysiology of schizophrenia and in mediating the efficacy of antipsychotic drugs. NT is also involved in the regulation of body temperature and pain sensitivity. Using neurotensin receptor 1 (NTR1) knockout (KO) and wild-type (WT) mice, these studies evaluated the involvement of NTR1 in the behavioral responses produced by peripheral administration of NT agonists (NT-2 and NT69L). Animals were characterized in paradigms designed to assess hypothermia, antinociception, and antipsychotic-like effects. Under basal conditions, there were no phenotypic differences between NTR1 KO and WT mice. In WT mice, both NTR1 agonists decreased core body temperature (active doses in mg/kg, i.p., for NT-2 and NT69L, respectively: 1 and 3), increased tail withdrawal latencies (1 and 3), produced decreased spontaneous climbing (0.1, 0.3, 1 and 1, 3, 10) and reversed apomorphine-induced climbing (0.3, 1 and 1, 3). In contrast, none of the effects of either agonist were present in KO mice. These results suggest that NTR1: (1) does not play a major role in the control of basal thermoregulation, nociception or psychomotor stimulation in mice (barring possible developmental plasticity), (2) does mediate these behavioral responses to NT agonists, and (3) may play a role in the potential antipsychotic effects of these agonists.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression