|  Help  |  About  |  Contact Us

Publication : The ras-GTPase activity of neurofibromin restrains ERK-dependent FGFR signaling during endochondral bone formation.

First Author  Ono K Year  2013
Journal  Hum Mol Genet Volume  22
Issue  15 Pages  3048-62
PubMed ID  23571107 Mgi Jnum  J:198529
Mgi Id  MGI:5496974 Doi  10.1093/hmg/ddt162
Citation  Ono K, et al. (2013) The Ras-GTPase activity of neurofibromin restrains ERK-dependent FGFR signaling during endochondral bone formation. Hum Mol Genet 22(15):3048-62
abstractText  The severe defects in growth plate development caused by chondrocyte extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) gain or loss-of-function suggest that tight spatial and temporal regulation of mitogen-activated protein kinase signaling is necessary to achieve harmonious growth plate elongation and structure. We provide here evidence that neurofibromin, via its Ras guanosine triphosphatase -activating activity, controls ERK1/2-dependent fibroblast growth factor receptor (FGFR) signaling in chondrocytes. We show first that neurofibromin is expressed in FGFR-positive prehypertrophic and hypertrophic chondrocytes during growth plate endochondral ossification. Using mice lacking neurofibromin 1 (Nf1) in type II collagen-expressing cells, (Nf1col2(-/-) mutant mice), we then show that lack of neurofibromin in post-mitotic chondrocytes triggers a number of phenotypes reminiscent of the ones observed in mice characterized by FGFR gain-of-function mutations. Those include dwarfism, constitutive ERK1/2 activation, strongly reduced Ihh expression and decreased chondrocyte proliferation and maturation, increased chondrocytic expression of Rankl, matrix metalloproteinase 9 (Mmp9) and Mmp13 and enhanced growth plate osteoclastogenesis, as well as increased sensitivity to caspase-9 mediated apoptosis. Using wildtype (WT) and Nf1(-/-) chondrocyte cultures in vitro, we show that FGF2 pulse-stimulation triggers rapid ERK1/2 phosphorylation in both genotypes, but that return to the basal level is delayed in Nf1(-/-) chondrocytes. Importantly, in vivo ERK1/2 inhibition by daily injection of a recombinant form of C-type natriuretic peptide to post-natal pups for 18 days was able to correct the short stature of Nf1col2(-/-) mice. Together, these results underscore the requirement of neurofibromin and ERK1/2 for normal endochondral bone formation and support the notion that neurofibromin, by restraining RAS-ERK1/2 signaling, is a negative regulator of FGFR signaling in differentiating chondrocytes.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression