|  Help  |  About  |  Contact Us

Publication : Neurogenic responses to amyloid-beta plaques in the brain of Alzheimer's disease-like transgenic (pPDGF-APPSw,Ind) mice.

First Author  Gan L Year  2008
Journal  Neurobiol Dis Volume  29
Issue  1 Pages  71-80
PubMed ID  17916429 Mgi Jnum  J:141488
Mgi Id  MGI:3818386 Doi  10.1016/j.nbd.2007.08.002
Citation  Gan L, et al. (2008) Neurogenic responses to amyloid-beta plaques in the brain of Alzheimer's disease-like transgenic (pPDGF-APPSw,Ind) mice. Neurobiol Dis 29(1):71-80
abstractText  Formation and accumulation of amyloid-beta (A beta) plaques are associated with declined memory and other neurocognitive function in Alzheimer's disease (AD) patients. However, the effects of A beta plaques on neural progenitor cells (NPCs) and neurogenesis from NPCs remain largely unknown. The existing data on neurogenesis in AD patients and AD-like animal models remain controversial. For this reason, we utilized the nestin second-intron enhancer controlled LacZ (pNes-LacZ) reporter transgenic mice (pNes-Tg) and Bi-transgenic mice (Bi-Tg) containing both pPDGF-APPSw,Ind and pNes-LacZ transgenes to investigate the effects of A beta plaques on neurogenesis in the hippocampus and other brain regions of the AD-like mice. We chose transgenic mice at 2, 8 and 12 months of age, corresponding to the stages of A beta plaque free, plaque onset and plaque progression to analyze the effects of A beta plaques on the distribution and de novo neurogenesis of (from) NPCs. We demonstrated a slight increase in the number of NPCs in the hippocampal regions at the A beta plaque free stage, while a significant decrease in the number of NPCs at A beta plaque onset and progression stages. On the other hand, we showed that A beta plaques increase neurogenesis, but not gliogenesis from post-mitotic NPCs in the hippocampus of Bi-Tg mice compared with age-matched control pNes-Tg mice. The neurogenic responses of NPCs to A beta plaques suggest that experimental approaches to promote de novo neurogenesis may potentially improve neurocognitive function and provide an effective therapy for AD.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression