|  Help  |  About  |  Contact Us

Publication : Effects of adiponectin on calcium-handling proteins in heart failure with preserved ejection fraction.

First Author  Tanaka K Year  2014
Journal  Circ Heart Fail Volume  7
Issue  6 Pages  976-85
PubMed ID  25149095 Mgi Jnum  J:341469
Mgi Id  MGI:7539625 Doi  10.1161/CIRCHEARTFAILURE.114.001279
Citation  Tanaka K, et al. (2014) Effects of adiponectin on calcium-handling proteins in heart failure with preserved ejection fraction. Circ Heart Fail 7(6):976-85
abstractText  BACKGROUND: Despite the increasing prevalence of heart failure with preserved ejection fraction (HFpEF) in humans, there remains no therapeutic options for HFpEF. Adiponectin, an adipocyte-derived cytokine, exerts cardioprotective actions, and its deficiency is implicated in the development of hypertension and HF with reduced ejection fraction. Similarly, adiponectin deficiency in HFpEF exacerbates left ventricular hypertrophy, diastolic dysfunction, and HF. However, the therapeutic effects of adiponectin in HFpEF remain unknown. We sought to test the hypothesis that chronic adiponectin overexpression protects against the progression of HF in a murine model of HFpEF. METHODS AND RESULTS: Adiponectin transgenic and wild-type mice underwent uninephrectomy, a continuous saline or d-aldosterone infusion and given 1.0% sodium chloride drinking water for 4 weeks. Aldosterone-infused wild-type mice developed HFpEF with hypertension, left ventricular hypertrophy, and diastolic dysfunction. Aldosterone infusion increased myocardial oxidative stress and decreased sarcoplasmic reticulum Ca(2+)-ATPase protein expression in HFpEF. Although total phospholamban protein expression was unchanged, there was a decreased expression of protein kinase A-dependent phospholamban phosphorylation at Ser16 and CaMKII (Ca(2+)/calmodulin-dependent protein kinase II)-dependent phospholamban phosphorylation at Thr17. Adiponectin overexpression in aldosterone-infused mice ameliorated left ventricular hypertrophy, diastolic dysfunction, lung congestion, and myocardial oxidative stress without affecting blood pressure and left ventricular EF. This improvement in diastolic dysfunction parameters in aldosterone-infused adiponectin transgenic mice was accompanied by the preserved protein expression of protein kinase A-dependent phosphorylation of phospholamban at Ser16. Adiponectin replacement prevented the progression of aldosterone-induced HFpEF, independent of blood pressure, by improving diastolic dysfunction and by modulating cardiac hypertrophy. CONCLUSIONS: These findings suggest that adiponectin may have therapeutic effects in patients with HFpEF.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression