|  Help  |  About  |  Contact Us

Publication : Regulation of membrane potential and fluid secretion by Ca2+-activated K+ channels in mouse submandibular glands.

First Author  Romanenko VG Year  2007
Journal  J Physiol Volume  581
Issue  Pt 2 Pages  801-17
PubMed ID  17379640 Mgi Jnum  J:140838
Mgi Id  MGI:3814677 Doi  10.1113/jphysiol.2006.127498
Citation  Romanenko VG, et al. (2007) Regulation of membrane potential and fluid secretion by Ca2+-activated K+ channels in mouse submandibular glands. J Physiol 581(Pt 2):801-17
abstractText  We have recently shown that the IK1 and maxi-K channels in parotid salivary gland acinar cells are encoded by the K(Ca)3.1 and K(Ca)1.1 genes, respectively, and in vivo stimulated parotid secretion is severely reduced in double-null mice. The current study tested whether submandibular acinar cell function also relies on these channels. We found that the K(+) currents in submandibular acinar cells have the biophysical and pharmacological footprints of IK1 and maxi-K channels and their molecular identities were confirmed by the loss of these currents in K(Ca)3.1- and K(Ca)1.1-null mice. Unexpectedly, the pilocarpine-stimulated in vivo fluid secretion from submandibular glands was essentially normal in double-null mice. This result and the possibility of side-effects of pilocarpine on the nervous system, led us to develop an ex vivo fluid secretion assay. Fluid secretion from the ex vivo assay was substantially (about 75%) reduced in animals with both K(+) channel genes ablated - strongly suggesting systemic complications with the in vivo assay. Additional experiments focusing on the membrane potential in isolated submandibular acinar cells revealed mechanistic details underlying fluid secretion in K(+) channel-deficient mice. The membrane potential of submandibular acinar cells from wild-type mice remained strongly hyperpolarized (-55 +/- 2 mV) relative to the Cl(-) equilibrium potential (-24 mV) during muscarinic stimulation. Similar hyperpolarizations were observed in K(Ca)3.1- and K(Ca)1.1-null mice (-51 +/- 3 and -48 +/- 3 mV, respectively), consistent with the normal fluid secretion produced ex vivo. In contrast, acinar cells from double K(Ca)3.1/K(Ca)1.1-null mice were only slightly hyperpolarized (-35 +/- 2 mV) also consistent with the ex vivo (but not in vivo) results. Finally, we found that the modest hyperpolarization of cells from the double-null mice was maintained by the electrogenic Na(+),K(+)-ATPase.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression