|  Help  |  About  |  Contact Us

Publication : Estrogens attenuate oxidative stress and the differentiation and apoptosis of osteoblasts by DNA-binding-independent actions of the ERalpha.

First Author  Almeida M Year  2010
Journal  J Bone Miner Res Volume  25
Issue  4 Pages  769-81
PubMed ID  19821774 Mgi Jnum  J:179867
Mgi Id  MGI:5304263 Doi  10.1359/jbmr.091017
Citation  Almeida M, et al. (2010) Estrogens attenuate oxidative stress and the differentiation and apoptosis of osteoblasts by DNA-binding-independent actions of the ERalpha. J Bone Miner Res 25(4):769-81
abstractText  Estrogens diminish oxidative stress in bone and bone marrow, attenuate the generation of osteoblasts, and decrease the prevalence of mature osteoblast apoptosis. We have searched for the molecular mechanism of these effects using as tools a mouse model bearing an estrogen receptor alpha (ERalpha) knock-in mutation that prevents binding to DNA (ERalpha(NERKI/-)) and several osteoblast progenitor cell models expressing the wild-type ERalpha or the ERalpha(NERKI/-). We report that the ability of estrogens to diminish the generation of reactive oxygen species, stimulate the activity of glutathione reductase, and decrease the phosphorylation of p66(shc), as well as osteoblastogenesis and osteoblast number and apoptosis, were fully preserved in ERalpha(NERKI/-) mice, indicating that the DNA-binding function of the ERalpha is dispensable for all these effects. Consistent with the attenuation of osteoblastogenesis in this animal model, 17beta-estradiol attenuated bone morphogenetic protein 2 (BMP-2)-induced gene transcription and osteoblast commitment and differentiation in murine and human osteoblastic cell lines. Moreover, 17beta-estradiol attenuated BMP-2-induced differentiation of primary cultures of calvaria- or bone marrow-derived osteoblastic cells from ERalpha(NERKI/-) mice as effectively as in cells from wild-type littermates. The inhibitory effect of the hormone on BMP-2 signaling resulted from an ERalpha-mediated activation of ERKs and the phosphorylation of Smad1 at the linker region of the protein, which leads to proteasomal degradation. These results illustrate that the effects of estrogens on oxidative stress and the birth and death of osteoblasts do not require the binding of ERalpha to DNA response elements, but instead they result from the activation of cytoplasmic kinases.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression