|  Help  |  About  |  Contact Us

Publication : Schwann cell-specific PTEN and EGFR dysfunctions affect neuromuscular junction development by impairing Agrin signaling and autophagy.

First Author  Zhang SJ Year  2019
Journal  Biochem Biophys Res Commun Volume  515
Issue  1 Pages  50-56
PubMed ID  31122699 Mgi Jnum  J:291195
Mgi Id  MGI:6442955 Doi  10.1016/j.bbrc.2019.05.014
Citation  Zhang SJ, et al. (2019) Schwann cell-specific PTEN and EGFR dysfunctions affect neuromuscular junction development by impairing Agrin signaling and autophagy. Biochem Biophys Res Commun 515(1):50-56
abstractText  The neuromuscular junction (NMJ) is formed by motor nerve terminals, post-junctional muscle membranes, and terminal Schwann cells (SCs). The formation of NMJ requires complex and dynamic molecular interactions. Nerve- and muscle-derived molecules have been well characterized but the mechanistic involvement of SC in NMJ development remains poorly understood. SC-specific phosphatase and tensin homolog (Pten) inactivation and epidermal growth factor receptor (EGFR) overexpression (Dhh-Cre; Cnp-EGFR; Pten(flox/flox) or DET) mice were used and NMJ malformation was observed in these mice. Acetylcholine receptors (AChRs) were distorted and varicose presynaptic nerve terminals appeared in the tibialis anterior (TA) muscle of DET mice. Agrin signaling related to NMJ development, was downregulated in TA muscle. Both RAS/MEK/ERK and PI3K/AKT/mTOR signaling pathways were activated in the sciatic nerves of DET mice. In addition, autophagy was downregulated in these sciatic nerves. Interestingly, the use of Torin 2, an mTOR inhibitor, rescued the phenotype. The downregulated-autophagy might account for Agrin signaling abnormity, which induced NMJ malformation. Taken together, our results indicate that SCs-specific Pten and EGFR cooperation are essential for NMJ development.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

11 Bio Entities

0 Expression