First Author | Wang T | Year | 2016 |
Journal | PLoS Pathog | Volume | 12 |
Issue | 6 | Pages | e1005662 |
PubMed ID | 27280399 | Mgi Jnum | J:247619 |
Mgi Id | MGI:5917144 | Doi | 10.1371/journal.ppat.1005662 |
Citation | Wang T, et al. (2016) Dectin-3 Deficiency Promotes Colitis Development due to Impaired Antifungal Innate Immune Responses in the Gut. PLoS Pathog 12(6):e1005662 |
abstractText | Interactions between commensal fungi and gut immune system are critical for establishing colonic homeostasis. Here we found that mice deficient in Dectin-3 (Clec4d-/-), a C-type lectin receptor that senses fungal infection, were more susceptible to dextran sodium sulfate (DSS)-induced colitis compared with wild-type mice. The specific fungal burden of Candida (C.) tropicalis was markedly increased in the gut after DSS treatment in Clec4d-/- mice, and supplementation with C. tropicalis aggravated colitis only in Clec4d-/- mice, but not in wild-type controls. Mechanistically, Dectin-3 deficiency impairs phagocytic and fungicidal abilities of macrophages, and C. tropicalis-induced NF-kappaB activation and cytokine production. The conditioned media derived from Dectin-3-deficient macrophages were defective in promoting tissue repairing in colonic epithelial cells. Finally, anti-fungal therapy was effective in treating colitis in Clec4d-/- mice. These studies identified the role of Dectin-3 and its functional interaction with commensal fungi in intestinal immune system and regulation of colonic homeostasis. |