|  Help  |  About  |  Contact Us

Publication : Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia.

First Author  Kondo T Year  1997
Journal  J Neurosci Volume  17
Issue  11 Pages  4180-9
PubMed ID  9151735 Mgi Jnum  J:278821
Mgi Id  MGI:6359558 Doi  10.1523/JNEUROSCI.17-11-04180.1997
Citation  Kondo T, et al. (1997) Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. J Neurosci 17(11):4180-9
abstractText  Apoptotic neuronal cell death has recently been associated with the development of infarction after cerebral ischemia. In a variety of studies, CuZn-superoxide dismutase (CuZn-SOD) has been shown to protect the brain from ischemic injury. A possible role for CuZn-SOD-related modulation of neuronal viability is suggested by the finding that CuZn-SOD inhibits apoptotic neuronal cell death in response to some forms of cellular damage. We evaluated this possibility in the model of transient focal cerebral ischemia in mice bearing a disruption of the CuZn-SOD gene (Sod1). Homozygous mutant (Sod1 -/-) mice had no detectable CuZn-SOD activity, and heterozygous mutants (Sod1 +/-) showed a 50% decrease compared with wild-type mice. Sod1 -/- mice showed a high level of blood-brain barrier disruption soon after 1 hr of middle cerebral artery occlusion and 100% mortality at 24 hr after ischemia. Sod1 +/- mice showed 30% mortality at 24 hr after ischemia, and neurological deficits were exacerbated compared with wild-type controls. The Sod1 +/- animals also had increased infarct volume and brain swelling, accompanied by increased apoptotic neuronal cell death as indicated by the in situ nick-end labeling technique to detect DNA fragmentation and morphological criteria. These results suggest that oxygen-free radicals, especially superoxide anions, are an important factor for the development of infarction by brain edema formation and apoptotic neuronal cell death after focal cerebral ischemia and reperfusion.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

0 Expression