|  Help  |  About  |  Contact Us

Publication : Role of Cu,Zn-SOD in the synthesis of endogenous vasodilator hydrogen peroxide during reactive hyperemia in mouse mesenteric microcirculation in vivo.

First Author  Yada T Year  2008
Journal  Am J Physiol Heart Circ Physiol Volume  294
Issue  1 Pages  H441-8
PubMed ID  18024543 Mgi Jnum  J:132306
Mgi Id  MGI:3775679 Doi  10.1152/ajpheart.01021.2007
Citation  Yada T, et al. (2008) Role of Cu,Zn-SOD in the synthesis of endogenous vasodilator hydrogen peroxide during reactive hyperemia in mouse mesenteric microcirculation in vivo. Am J Physiol Heart Circ Physiol 294(1):H441-8
abstractText  We have recently demonstrated that endothelium-derived hydrogen peroxide (H2O2) is an endothelium-derived hyperpolarizing factor and that endothelial Cu/Zn-superoxide dismutase (SOD) plays an important role in the synthesis of endogenous H2O2 in both animals and humans. We examined whether SOD plays a role in the synthesis of endogenous H2O2 during in vivo reactive hyperemia (RH), an important regulatory mechanism. Mesenteric arterioles from wild-type and Cu,Zn-SOD(-/-) mice were continuously observed by a pencil-type charge-coupled device (CCD) intravital microscope during RH (reperfusion after 20 and 60 s of mesenteric artery occlusion) in the cyclooxygenase blockade under the following four conditions: control, catalase alone, N(G)-monomethyl-L-arginine (L-NMMA) alone, and L-NMMA + catalase. Vasodilatation during RH was significantly decreased by catalase or L-NMMA alone and was almost completely inhibited by L-NMMA + catalase in wild-type mice, whereas it was inhibited by L-NMMA and L-NMMA + catalase in the Cu,Zn-SOD(-/-) mice. RH-induced increase in blood flow after L-NMMA was significantly increased in the wild-type mice, whereas it was significantly reduced in the Cu,Zn-SOD(-/-) mice. In mesenteric arterioles of the Cu,Zn-SOD(-/-) mice, Tempol, an SOD mimetic, significantly increased the ACh-induced vasodilatation, and the enhancing effect of Tempol was decreased by catalase. Vascular H(2)O(2) production by fluorescent microscopy in mesenteric arterioles after RH was significantly increased in response to ACh in wild-type mice but markedly impaired in Cu,Zn-SOD(-/-) mice. Endothelial Cu,Zn-SOD plays an important role in the synthesis of endogenous H(2)O(2) that contributes to RH in mouse mesenteric smaller arterioles.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression