|  Help  |  About  |  Contact Us

Publication : Deletion of the Na-K-2Cl cotransporter NKCC1 results in a more severe epileptic phenotype in the intrahippocampal kainate mouse model of temporal lobe epilepsy.

First Author  Hampel P Year  2021
Journal  Neurobiol Dis Volume  152
Pages  105297 PubMed ID  33581254
Mgi Jnum  J:311371 Mgi Id  MGI:6706990
Doi  10.1016/j.nbd.2021.105297 Citation  Hampel P, et al. (2021) Deletion of the Na-K-2Cl cotransporter NKCC1 results in a more severe epileptic phenotype in the intrahippocampal kainate mouse model of temporal lobe epilepsy. Neurobiol Dis 152:105297
abstractText  Increased neuronal expression of the Na-K-2Cl cotransporter NKCC1 has been implicated in the generation of seizures and epilepsy. However, conclusions from studies on the NKCC1-specific inhibitor, bumetanide, are equivocal, which is a consequence of the multiple potential cellular targets and poor brain penetration of this drug. Here, we used Nkcc1 knockout (KO) and wildtype (WT) littermate control mice to study the ictogenic and epileptogenic effects of intrahippocampal injection of kainate. Kainate (0.23 mug in 50 nl) induced limbic status epilepticus (SE) in both KO and WT mice with similar incidence, latency to SE onset, and SE duration, but the number of intermittent generalized convulsive seizures during SE was significantly higher in Nkcc1 KO mice, indicating increased SE severity. Following SE, spontaneous recurrent seizures (SRS) were recorded by continuous (24/7) video/EEG monitoring at 0-1, 4-5, and 12-13 weeks after kainate, using depth electrodes in the ipsilateral hippocampus. Latency to onset of electrographic SRS and the incidence of electrographic SRS were similar in WT and KO mice. However, the frequency of electrographic seizures was lower whereas the frequency of electroclinical seizures was higher in Nkcc1 KO mice, indicating a facilitated progression from electrographic to electroclinical seizures during chronic epilepsy, and a more severe epileptic phenotype, in the absence of NKCC1. The present findings suggest that NKCC1 is dispensable for the induction, progression and manifestation of epilepsy, and they do not support the widely held notion that inhibition of NKCC1 in the brain is a useful strategy for preventing or modifying epilepsy.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression