First Author | Zhou YW | Year | 2005 |
Journal | Am J Physiol Cell Physiol | Volume | 288 |
Issue | 2 | Pages | C377-88 |
PubMed ID | 15385269 | Mgi Jnum | J:101258 |
Mgi Id | MGI:3603512 | Doi | 10.1152/ajpcell.00279.2004 |
Citation | Zhou YW, et al. (2005) Laminin-alpha1 globular domains 3 and 4 induce heterotrimeric G protein binding to alpha-syntrophin's PDZ domain and alter intracellular Ca2+ in muscle. Am J Physiol Cell Physiol 288(2):C377-88 |
abstractText | Alpha-syntrophin is a component of the dystrophin glycoprotein complex (DGC). It is firmly attached to the dystrophin cytoskeleton via a unique COOH-terminal domain and is associated indirectly with alpha-dystroglycan, which binds to extracellular matrix laminin. Syntrophin contains two pleckstrin homology (PH) domains and one PDZ domain. Because PH domains of other proteins are known to bind the betagamma-subunits of the heterotrimeric G proteins, whether this is also a property of syntrophin was investigated. Isolated syntrophin from rabbit skeletal muscle binds bovine brain Gbetagamma-subunits in gel blot overlay experiments. Laminin-1-Sepharose or specific antibodies against syntrophin, alpha- and beta-dystroglycan, or dystrophin precipitate a complex with Gbetagamma from crude skeletal muscle microsomes. Bacterially expressed syntrophin fusion proteins and truncation mutants allowed mapping of Gbetagamma binding to syntrophin's PDZ domain; this is a novel function for PDZ domains. When laminin-1 is bound, maximal binding of Gsalpha and Gbetagamma occurs and active Gsalpha, measured as GTP-gamma35S bound, decreases. Because intracellular Ca2+ is elevated in Duchenne muscular dystrophy and Gsalpha is known to activate the dihydropyridine receptor Ca2+ channel, whether laminin also altered intracellular Ca2+ was investigated. Laminin-1 decreases active (GTP-gammaS-bound) Gsalpha, and the Ca2+ channel is inhibited by laminin-1. The laminin alpha1-chain globular domains 4 and 5 region, the region bound by DGC alpha-dystroglycan, is sufficient to cause an effect, and an antibody that specifically blocks laminin binding to alpha-dystroglycan inhibits Gbeta binding by syntrophin in C2C12 myotubes. These observations suggest that DGC is a matrix laminin, G protein-coupled receptor. |