|  Help  |  About  |  Contact Us

Publication : Complement C5a receptors C5L2 and C5aR in renal fibrosis.

First Author  Martin IV Year  2018
Journal  Am J Physiol Renal Physiol Volume  314
Issue  1 Pages  F35-F46
PubMed ID  28903945 Mgi Jnum  J:280068
Mgi Id  MGI:6367885 Doi  10.1152/ajprenal.00060.2017
Citation  Martin IV, et al. (2018) Complement C5a receptors C5L2 and C5aR in renal fibrosis. Am J Physiol Renal Physiol 314(1):F35-F46
abstractText  Complement factor C5a has two known receptors, C5aR, which mediates proinflammatory effects, and C5L2, a potential C5a decoy receptor. We previously identified C5a/C5aR signaling as a potent profibrotic pathway in the kidney. Here we tested for the first time the role of C5L2 in renal fibrosis. In unilateral ureteral obstruction (UUO)-induced kidney fibrosis, the expression of C5aR and C5L2 increased similarly and gradually as fibrosis progressed and was particularly prominent in injured dilated tubules. Genetic deficiency of either C5aR or C5L2 significantly reduced UUO-induced tubular injury. Expression of key proinflammatory mediators, however, significantly increased in C5L2- compared with C5aR-deficient mice, but this had no effect on the number of renal infiltrating macrophages or T cells. Moreover, in C5L2(-/-) mice, the cytokine and matrix metalloproteinase-inhibitor tissue inhibitor of matrix metalloproteinase-1 was specifically enhanced. Consequently, in C5L2(-/-) mice the degree of renal fibrosis was similar to wild type (WT), albeit with reduced mRNA expression of some fibrosis-related genes. In contrast, C5aR(-/-) mice had significantly reduced renal fibrosis compared with WT and C5L2(-/-) mice in UUO. In vitro experiments with primary tubular cells demonstrated that deficiency for either C5aR or C5L2 led to a significantly reduced expression of tubular injury and fibrosis markers. Vice versa, stimulation of WT tubular cells with C5a significantly induced the expression of these markers, whereas the absence of either receptor abolished this induction. In conclusion, in experimental renal fibrosis C5L2 and C5aR both contribute to tubular injury, and, while C5aR acts profibrotic, C5L2 does not play a role in extracellular matrix accumulation, arguing against C5L2 functioning simply as a decoy receptor.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression