|  Help  |  About  |  Contact Us

Publication : Involvement of the protein kinase Akt2 in insulin-stimulated Rac1 activation leading to glucose uptake in mouse skeletal muscle.

First Author  Takenaka N Year  2019
Journal  PLoS One Volume  14
Issue  2 Pages  e0212219
PubMed ID  30735546 Mgi Jnum  J:271985
Mgi Id  MGI:6280096 Doi  10.1371/journal.pone.0212219
Citation  Takenaka N, et al. (2019) Involvement of the protein kinase Akt2 in insulin-stimulated Rac1 activation leading to glucose uptake in mouse skeletal muscle. PLoS One 14(2):e0212219
abstractText  Translocation of the glucose transporter GLUT4 to the sarcolemma accounts for glucose uptake in skeletal muscle following insulin administration. The protein kinase Akt2 and the small GTPase Rac1 have been implicated as essential regulators of insulin-stimulated GLUT4 translocation. Several lines of evidence suggest that Rac1 is modulated downstream of Akt2, and indeed the guanine nucleotide exchange factor FLJ00068 has been identified as an activator of Rac1. On the other hand, the mechanisms whereby Akt2 and Rac1 are regulated in parallel downstream of phosphoinositide 3-kinase are also proposed. Herein, we aimed to provide additional evidence that support a critical role for Akt2 in insulin regulation of Rac1 in mouse skeletal muscle. Knockdown of Akt2 by RNA interference abolished Rac1 activation following intravenous administration of insulin or ectopic expression of a constitutively activated phosphoinositide 3-kinase mutant. The activation of another small GTPase RalA and GLUT4 translocation to the sarcolemma following insulin administration or ectopic expression of a constitutively activated form of phosphoinositide 3-kinase, but not Rac1, were also diminished by downregulation of Akt2 expression. Collectively, these results strongly support the notion that Rac1 acts downstream of Akt2 leading to the activation of RalA and GLUT4 translocation to the sarcolemma in skeletal muscle.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Authors

2 Bio Entities

Trail: Publication

0 Expression