|  Help  |  About  |  Contact Us

Publication : The tandem CCCH zinc finger protein tristetraprolin and its relevance to cytokine mRNA turnover and arthritis.

First Author  Carrick DM Year  2004
Journal  Arthritis Res Ther Volume  6
Issue  6 Pages  248-64
PubMed ID  15535838 Mgi Jnum  J:94094
Mgi Id  MGI:3511087 Doi  10.1186/ar1441
Citation  Carrick DM, et al. (2004) The tandem CCCH zinc finger protein tristetraprolin and its relevance to cytokine mRNA turnover and arthritis. Arthritis Res Ther 6(6):248-64
abstractText  Tristetraprolin (TTP) is the best-studied member of a small family of three proteins in humans that is characterized by a tandem CCCH zinc finger (TZF) domain with highly conserved sequences and spacing. Although initially discovered as a gene that could be induced rapidly and transiently by the stimulation of fibroblasts with growth factors and mitogens, it is now known that TTP can bind to AU-rich elements in mRNA, leading to the removal of the poly(A) tail from that mRNA and increased rates of mRNA turnover. This activity was discovered after TTP-deficient mice were created and found to have a systemic inflammatory syndrome with severe polyarticular arthritis and autoimmunity, as well as medullary and extramedullary myeloid hyperplasia. The syndrome seemed to be due predominantly to excess circulating tumor necrosis factor-alpha (TNF-alpha), resulting from the increased stability of the TNF-alpha mRNA and subsequent higher rates of secretion of the cytokine. The myeloid hyperplasia might be due in part to increased stability of granulocyte-macrophage colony-stimulating factor (GM-CSF). This review highlights briefly the characteristics of the TTP-deficiency syndrome in mice and its possible genetic modifiers, as well as recent data on the characteristics of the TTP-binding site in the TNF-alpha and GM-CSF mRNAs. Recent structural data on the characteristics of the complex between RNA and one of the TTP-related proteins are reviewed, and used to model the TTP-RNA binding complex. We review the current knowledge of TTP sequence variants in humans and discuss the possible contributions of the TTP-related proteins in mouse physiology and in human monocytes. The TTP pathway of TNF-alpha and GM-CSF mRNA degradation is a possible novel target for anti-TNF-alpha therapies for rheumatoid arthritis, and also for other conditions proven to respond to anti-TNF-alpha therapy.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression