|  Help  |  About  |  Contact Us

Publication : Inhibition of mitochondrial fission protects podocytes from albumin-induced cell damage in diabetic kidney disease.

First Author  Tagaya M Year  2022
Journal  Biochim Biophys Acta Mol Basis Dis Volume  1868
Issue  5 Pages  166368
PubMed ID  35202791 Mgi Jnum  J:337140
Mgi Id  MGI:7257602 Doi  10.1016/j.bbadis.2022.166368
Citation  Tagaya M, et al. (2022) Inhibition of mitochondrial fission protects podocytes from albumin-induced cell damage in diabetic kidney disease. Biochim Biophys Acta Mol Basis Dis 1868(5):166368
abstractText  AIMS: Identifying the mechanisms that underlie progression from endothelial damage to podocyte damage, which leads to massive proteinuria, is an urgent issue that must be clarified to improve renal outcome in diabetic kidney disease (DKD). We aimed to examine the role of dynamin-related protein 1 (Drp1)-mediated regulation of mitochondrial fission in podocytes in the pathogenesis of massive proteinuria in DKD. METHODS: Diabetes- or albuminuria-associated changes in mitochondrial morphology in podocytes were examined by electron microscopy. The effects of albumin and other diabetes-related stimuli, including high glucose (HG), on mitochondrial morphology were examined in cultured podocytes. The role of Drp1 in podocyte damage was examined using diabetic podocyte-specific Drp1-deficient mice treated with neuraminidase, which removes endothelial glycocalyx. RESULTS: Neuraminidase-induced removal of glomerular endothelial glycocalyx in nondiabetic mice led to microalbuminuria without podocyte damage, accompanied by reduced Drp1 expression and mitochondrial elongation in podocytes. In contrast, streptozotocin-induced diabetes significantly exacerbated neuraminidase-induced podocyte damage and albuminuria, and was accompanied by increased Drp1 expression and enhanced mitochondrial fission in podocytes. Cell culture experiments showed that albumin stimulation decreased Drp1 expression and elongated mitochondria, although HG inhibited albumin-associated changes in mitochondrial dynamics, resulting in apoptosis. Podocyte-specific Drp1-deficiency in mice prevented diabetes-related exacerbation of podocyte damage and neuraminidase-induced development of albuminuria. Endothelial dysfunction-induced albumin exposure is cytotoxic to podocytes. Inhibition of mitochondrial fission in podocytes is a cytoprotective mechanism against albumin stimulation, which is impaired under diabetic condition. Inhibition of mitochondrial fission in podocytes may represent a new therapeutic strategy for massive proteinuria in DKD.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression