|  Help  |  About  |  Contact Us

Publication : Site-directed mutagenesis of active site glutamate-217 in mouse adenosine deaminase.

First Author  Mohamedali KA Year  1996
Journal  Biochemistry Volume  35
Issue  5 Pages  1672-80
PubMed ID  8634299 Mgi Jnum  J:328859
Mgi Id  MGI:7339312 Doi  10.1021/bi9514119
Citation  Mohamedali KA, et al. (1996) Site-directed mutagenesis of active site glutamate-217 in mouse adenosine deaminase. Biochemistry 35(5):1672-80
abstractText  Mouse adenosine deaminase (ADA) contains an active site glutamate residue at position-217 that is highly conserved in other adenosine and AMP deaminases. Previous research has suggested that proton donation to N-1 of the adenosine ring occurs prior to catalysis and supports the mechanism as proceeding via formation of a tetrahedral intermediate at C-6 of adenosine. The proposed catalytic mechanism of ADA based on the recent elucidations of the crystal structure of this enzyme with transition- and ground-state analogs hypothesized that Glu217 was involved in this proton donation step [Wilson, D. K., Rudolph, F. B., & Quiocho, F. A. (1991) Science 252, 1278-1284; Wilson, D. K., & Quiocho, F. A. (1993) Biochemistry 32, 1689-1693]. Site-directed mutagenesis of the equivalent glutamate in human ADA resulted in a dramatic loss of enzyme activity [Bhaumik, D., Medin, J., Gathy, K., & Coleman, M. (1993) J. Biol. Chem. 268, 5464-5470]. To further study the importance of this residue, site-directed mutagenesis was used to create mouse ADA mutants. Glu217 was mutated to Asp, Gly, Gln, and Ser, and all mutants were successfully expressed and purified. Circular dichroism and zinc analysis showed no significant changes in secondary structure or zinc content, respectively, compared to the native protein. The mutants showed only a slight variation in Km but dramatically reduced kcat, less than 0.2% of wild-type activity. UV difference and 13C NMR spectra conclusively demonstrated the failure of any of these mutants to hydrate purine riboside, a reaction carried out by the wild-type enzyme that results in formation of an enzyme-inhibitor complex. Surprisingly, Ki values for binding of the inhibitor to the mutants and to wild-type protein are similar, irrespective of whether the inhibitor is hydrated upon binding. These data confirm the importance of Glu217 in catalysis as suggested by the crystal structure of mouse ADA.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Bio Entities

Trail: Publication

0 Expression