|  Help  |  About  |  Contact Us

Publication : Role of regulator of G protein signaling 2 (RGS2) in Ca(2+) oscillations and adaptation of Ca(2+) signaling to reduce excitability of RGS2-/- cells.

First Author  Wang X Year  2004
Journal  J Biol Chem Volume  279
Issue  40 Pages  41642-9
PubMed ID  15292238 Mgi Jnum  J:93456
Mgi Id  MGI:3057078 Doi  10.1074/jbc.M406450200
Citation  Wang X, et al. (2004) Role of regulator of G protein signaling 2 (RGS2) in Ca(2+) oscillations and adaptation of Ca(2+) signaling to reduce excitability of RGS2-/- cells. J Biol Chem 279(40):41642-9
abstractText  Regulators of G protein signaling (RGS) proteins accelerate the GTPase activity of Galpha subunits to determine the duration of the stimulated state and control G protein-coupled receptor-mediated cell signaling. RGS2 is an RGS protein that shows preference toward Galpha(q).To better understand the role of RGS2 in Ca(2+) signaling and Ca(2+) oscillations, we characterized Ca(2+) signaling in cells derived from RGS2(-/-) mice. Deletion of RGS2 modified the kinetic of inositol 1,4,5-trisphosphate (IP(3)) production without affecting the peak level of IP(3), but rather increased the steady-state level of IP(3) at all agonist concentrations. The increased steady-state level of IP(3) led to an increased frequency of [Ca(2+)](i) oscillations. The cells were adapted to deletion of RGS2 by reducing Ca(2+) signaling excitability. Reduced excitability was achieved by adaptation of all transporters to reduce Ca(2+) influx into the cytosol. Thus, IP(3) receptor 1 was down-regulated and IP(3) receptor 3 was up-regulated in RGS2(-/-) cells to reduce the sensitivity for IP(3) to release Ca(2+) from the endoplasmic reticulum to the cytosol. Sarco/endoplasmic reticulum Ca(2+) ATPase 2b was up-regulated to more rapidly remove Ca(2+) from the cytosol of RGS2(-/-) cells. Agonist-stimulated Ca(2+) influx was reduced, and Ca(2+) efflux by plasma membrane Ca(2+) was up-regulated in RGS2(-/-) cells. The result of these adaptive mechanisms was the reduced excitability of Ca(2+) signaling, as reflected by the markedly reduced response of RGS2(-/-) cells to changes in the endoplasmic reticulum Ca(2+) load and to an increase in extracellular Ca(2+). These findings highlight the central role of RGS proteins in [Ca(2+)](i) oscillations and reveal a prominent plasticity and adaptability of the Ca(2+) signaling apparatus.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression