First Author | Liu KJ | Year | 2007 |
Journal | Nature | Volume | 446 |
Issue | 7131 | Pages | 79-82 |
PubMed ID | 17293880 | Mgi Jnum | J:119186 |
Mgi Id | MGI:3701415 | Doi | 10.1038/nature05557 |
Citation | Liu KJ, et al. (2007) Chemical rescue of cleft palate and midline defects in conditional GSK-3beta mice. Nature 446(7131):79-82 |
abstractText | Glycogen synthase kinase-3beta (GSK-3beta) has integral roles in a variety of biological processes, including development, diabetes, and the progression of Alzheimer's disease. As such, a thorough understanding of GSK-3beta function will have a broad impact on human biology and therapeutics. Because GSK-3beta interacts with many different pathways, its specific developmental roles remain unclear. We have discovered a genetic requirement for GSK-3beta in midline development. Homozygous null mice display cleft palate, incomplete fusion of the ribs at the midline and bifid sternum as well as delayed sternal ossification. Using a chemically regulated allele of GSK-3beta (ref. 6), we have defined requirements for GSK-3beta activity during discrete temporal windows in palatogenesis and skeletogenesis. The rapamycin-dependent allele of GSK-3beta produces GSK-3beta fused to a tag, FRB* (FKBP/rapamycin binding), resulting in a rapidly destabilized chimaeric protein. In the absence of drug, GSK-3beta(FRB)*(/FRB)* mutants appear phenotypically identical to GSK-3beta-/- mutants. In the presence of drug, GSK-3betaFRB* is rapidly stabilized, restoring protein levels and activity. Using this system, mutant phenotypes were rescued by restoring endogenous GSK-3beta activity during two distinct periods in gestation. This technology provides a powerful tool for defining windows of protein function during development. |