|  Help  |  About  |  Contact Us

Publication : Frontline Science: TNF-α and GM-CSF1 priming augments the role of SOS1/2 in driving activation of Ras, PI3K-γ, and neutrophil proinflammatory responses.

First Author  Suire S Year  2019
Journal  J Leukoc Biol Volume  106
Issue  4 Pages  815-822
PubMed ID  30720883 Mgi Jnum  J:280858
Mgi Id  MGI:6364747 Doi  10.1002/JLB.2HI0918-359RR
Citation  Suire S, et al. (2019) Frontline Science: TNF-alpha and GM-CSF1 priming augments the role of SOS1/2 in driving activation of Ras, PI3K-gamma, and neutrophil proinflammatory responses. J Leukoc Biol 106(4):815-822
abstractText  Circulating neutrophils are, by necessity, quiescent and relatively unresponsive to acute stimuli. In regions of inflammation, mediators can prime neutrophils to react to acute stimuli with stronger proinflammatory, pathogen-killing responses. In neutrophils G protein-coupled receptor (GPCR)-driven proinflammatory responses, such as reactive oxygen species (ROS) formation and accumulation of the key intracellular messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP3 ), are highly dependent on PI3K-gamma, a Ras-GTP, and Gbetagamma coincidence detector. In unprimed cells, the major GPCR-triggered activator of Ras is the Ras guanine nucleotide exchange factor (GEF), Ras guanine nucleotide releasing protein 4 (RasGRP4). Although priming is known to increase GPCR-PIP3 signaling, the mechanisms underlying this augmentation remain unclear. We used genetically modified mice to address the role of the 2 RasGEFs, RasGRP4 and son of sevenless (SOS)1/2, in neutrophil priming. We found that following GM-CSF/TNFalpha priming, RasGRP4 had only a minor role in the enhanced responses. In contrast, SOS1/2 acquired a substantial role in ROS formation, PIP3 accumulation, and ERK activation in primed cells. These results suggest that SOS1/2 signaling plays a key role in determining the responsiveness of neutrophils in regions of inflammation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

18 Bio Entities

Trail: Publication

0 Expression