|  Help  |  About  |  Contact Us

Publication : Cathepsin D is the main lysosomal enzyme involved in the degradation of alpha-synuclein and generation of its carboxy-terminally truncated species.

First Author  Sevlever D Year  2008
Journal  Biochemistry Volume  47
Issue  36 Pages  9678-87
PubMed ID  18702517 Mgi Jnum  J:140580
Mgi Id  MGI:3814127 Doi  10.1021/bi800699v
Citation  Sevlever D, et al. (2008) Cathepsin D is the main lysosomal enzyme involved in the degradation of alpha-synuclein and generation of its carboxy-terminally truncated species. Biochemistry 47(36):9678-87
abstractText  Alpha-synuclein is likely to play a key role in the development of Parkinson's disease as well as other synucleinopathies. In animal models, overexpression of full-length or carboxy-terminally truncated alpha-synuclein has been shown to produce pathology. Although the proteosome and lysosome have been proposed to play a role in the degradation of alpha-synuclein, the enzyme(s) involved in alpha-synuclein clearance and generation of its carboxy-terminally truncated species have not been identified. In this study, the role of cathepsin D and calpain I in these processes was analyzed. In vitro experiments, using either recombinant or endogenous alpha-synuclein as substrates and purified cathepsin D or lysosomes, demonstrated that cathepsin D degraded alpha-synuclein very efficiently, and that limited proteolysis resulted in the generation of carboxy-terminally truncated species. Purified calpain I also cleaved alpha-synuclein, but carboxy-terminally truncated species were not the main cleavage products, and calpain I activity present in cellular lysates was not able to degrade the protein. Knockdown of cathepsin D in cells overexpressing wild-type alpha-synuclein increased total alpha-synuclein levels by 28% and lysosomal alpha-synuclein by 2-fold. In in vitro experiments, pepstatin A completely blocked the degradation of alpha-synuclein in purified lysosomes. Furthermore, lysosomes isolated from cathepsin D knockdown cells showed a marked reduction in alpha-synuclein degrading activity, indicating that cathepsin D is the main lysosomal enzyme involved in alpha-synuclein degradation. Our findings suggest that upregulation of cathepsin D could be an additional therapeutic strategy to lessen alpha-synuclein burden in synucleinopathies.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Authors

2 Bio Entities

Trail: Publication

0 Expression