|  Help  |  About  |  Contact Us

Publication : Molecular dissection of ALS-associated toxicity of SOD1 in transgenic mice using an exon-fusion approach.

First Author  Deng HX Year  2008
Journal  Hum Mol Genet Volume  17
Issue  15 Pages  2310-9
PubMed ID  18424447 Mgi Jnum  J:137635
Mgi Id  MGI:3801376 Doi  10.1093/hmg/ddn131
Citation  Han-Xiang D, et al. (2008) Molecular dissection of ALS-associated toxicity of SOD1 in transgenic mice using an exon-fusion approach. Hum Mol Genet 17(15):2310-9
abstractText  Mutations in Cu,Zn superoxide dismutase (SOD1) are associated with amyotrophic lateral sclerosis (ALS). Among more than 100 ALS-associated SOD1 mutations, premature termination codon (PTC) mutations exclusively occur in exon 5, the last exon of SOD1. The molecular basis of ALS-associated toxicity of the mutant SOD1 is not fully understood. Here, we show that nonsense-mediated mRNA decay (NMD) underlies clearance of mutant mRNA with a PTC in the non-terminal exons. To further define the crucial ALS-associated SOD1 fragments, we designed and tested an exon-fusion approach using an artificial transgene SOD1(T116X) that harbors a PTC in exon 4. We found that the SOD1(T116X) transgene with a fused exon could escape NMD in cellular models. We generated a transgenic mouse model that overexpresses SOD1(T116X). This mouse model developed ALS-like phenotype and pathology. Thus, our data have demonstrated that a 'mini-SOD1' of only 115 amino acids is sufficient to cause ALS. This is the smallest ALS-causing SOD1 molecule currently defined. This proof of principle result suggests that the exon-fusion approach may have potential not only to further define a shorter ALS-associated SOD1 fragment, thus providing a molecular target for designing rational therapy, but also to dissect toxicities of other proteins encoded by genes of multiple exons through a 'gain of function' mechanism.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

0 Bio Entities

0 Expression