First Author | Fonda ML | Year | 1992 |
Journal | J Biol Chem | Volume | 267 |
Issue | 22 | Pages | 15978-83 |
PubMed ID | 1322411 | Mgi Jnum | J:337083 |
Mgi Id | MGI:7493896 | Doi | 10.1016/S0021-9258(19)49630-0 |
Citation | Fonda ML (1992) Purification and characterization of vitamin B6-phosphate phosphatase from human erythrocytes. J Biol Chem 267(22):15978-83 |
abstractText | Human erythrocytes rapidly convert vitamin B6 to pyridoxal-P and contain soluble phosphatase activity which dephosphorylates pyridoxal-P at a pH optimum of 6-6.5. This phosphatase was purified 51,000-fold with a yield of 39% by ammonium sulfate precipitation and chromatography on DEAE-Sepharose, Sephacryl S-200, hydroxylapatite, and reactive yellow 86-agarose. Sephacryl S-200 chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the enzyme was a dimer with a molecular mass of approximately 64 kDa. The phosphatase required Mg2+ for activity. It specifically catalyzed the removal of phosphate from pyridoxal-P, pyridoxine-P, pyridoxamine-P, 4-pyridoxic acid-P, and 4-deoxypyridoxine-P at pH 7.4. Nucleotide phosphates, phosphoamino acids, and other phosphorylated compounds were not hydrolyzed significantly nor were they effective inhibitors of the enzyme. The phosphatase showed Michaelis-Menten kinetics with its substrates. It had a Km of 1.5 microM and a Vmax of 3.2 mumol/min/mg with pyridoxal-P. The Vmax/Km was greatest with pyridoxal-P greater than 4-pyridoxic acid-P greater than pyridoxine-P greater than pyridoxamine-P. The phosphatase was competitively inhibited by the product, inorganic phosphate, with a Ki of 0.8 mM, and weakly inhibited by pyridoxal. It was also inhibited by Zn2+, fluoride, molybdate, and EDTA, but was not inhibited by levamisole, L-phenylalanine, or L(+)-tartrate. These properties of the purified enzyme suggest that it is a unique acid phosphatase that specifically dephosphorylates vitamin B6-phosphates. |