First Author | Amrani A | Year | 2000 |
Journal | J Clin Invest | Volume | 105 |
Issue | 4 | Pages | 459-68 |
PubMed ID | 10683375 | Mgi Jnum | J:60669 |
Mgi Id | MGI:1353780 | Doi | 10.1172/JCI8185 |
Citation | Amrani A, et al. (2000) IL-1alpha, IL-1beta, and IFN-gamma mark beta cells for Fas-dependent destruction by diabetogenic CD4(+) T lymphocytes. J Clin Invest 105(4):459-68 |
abstractText | Cytokines such as IL-1alpha, IL-1beta, and IFN-gamma have long been implicated in the pathogenesis of autoimmune diabetes, but the mechanisms through which they promote diabetogenesis remain unclear. Here we show that CD4(+) T lymphocytes propagated from transgenic nonobese diabetic (NOD) mice expressing the highly diabetogenic, beta cell-specific 4.1-T-cell receptor (4.1-TCR) can kill IL-1alpha-, IL-1beta-, and IFN-gamma-treated beta cells from NOD mice. Untreated NOD beta cells and cytokine-treated beta cells from Fas-deficient NOD.lpr mice are not targeted by these T cells. Killing of islet cells in vitro was associated with cytokine-induced upregulation of Fas on islet cells and was independent of MHC class II expression. Abrogation of Fas expression in 4.1-TCR-transgenic NOD mice afforded nearly complete protection from diabetes and did not interfere with the development of the transgenic CD4(+) T cells or with their ability to cause insulitis. In contrast, abrogation of perforin expression did not affect beta cell-specific cytotoxicity or the diabetogenic potential of these T cells. These data demonstrate a novel mechanism of action of IL-1alpha, IL-1beta, and IFN-gamma in autoimmune diabetes, whereby these cytokines mark beta cells for Fas-dependent lysis by autoreactive CD4(+) T cells. |