|  Help  |  About  |  Contact Us

Publication : Regulation of de novo purine biosynthesis by methenyltetrahydrofolate synthetase in neuroblastoma.

First Author  Field MS Year  2006
Journal  J Biol Chem Volume  281
Issue  7 Pages  4215-21
PubMed ID  16365037 Mgi Jnum  J:108488
Mgi Id  MGI:3624161 Doi  10.1074/jbc.M510624200
Citation  Field MS, et al. (2006) Regulation of de novo purine biosynthesis by methenyltetrahydrofolate synthetase in neuroblastoma. J Biol Chem 281(7):4215-21
abstractText  5-Formyltetrahydrofolate (5-formylTHF) is the only folate derivative that does not serve as a cofactor in folate-dependent one-carbon metabolism. Two metabolic roles have been ascribed to this folate derivative. It has been proposed to 1) serve as a storage form of folate because it is chemically stable and accumulates in seeds and spores and 2) regulate folate-dependent one-carbon metabolism by inhibiting folate-dependent enzymes, specifically targeting folate-dependent de novo purine biosynthesis. Methenyltetrahydrofolate synthetase (MTHFS) is the only enzyme that metabolizes 5-formylTHF and catalyzes its ATP-dependent conversion to 5,10-methenylTHF. This reaction determines intracellular 5-formylTHF concentrations and converts 5-formylTHF into an enzyme cofactor. The regulation and metabolic role of MTHFS in one-carbon metabolism was investigated in vitro and in human neuroblastoma cells. Steady-state kinetic studies revealed that 10-formylTHF, which exists in chemical equilibrium with 5,10-methenylTHF, acts as a tight binding inhibitor of mouse MTHFS. [6R]-10-formylTHF inhibited MTHFS with a K(i) of 150 nM, and [6R,S]-10-formylTHF triglutamate inhibited MTHFS with a K(i) of 30 nm. MTHFS is the first identified 10-formylTHF tight-binding protein. Isotope tracer studies in neuroblastoma demonstrate that MTHFS enhances de novo purine biosynthesis, indicating that MTHFS-bound 10-formylTHF facilitates de novo purine biosynthesis. Feedback metabolic regulation of MTHFS by 10-formylTHF indicates that 5-formylTHF can only accumulate in the presence of 10-formylTHF, providing the first evidence that 5-formylTHF is a storage form of excess formylated folates in mammalian cells. The sequestration of 10-formylTHF by MTHFS may explain why de novo purine biosynthesis is protected from common disruptions in the folate-dependent one-carbon network.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression